Transactions of the Association for Computational Linguistics, vol. 6, pp. 225–240, 2018. Action Editor: Philipp Koehn.

Transactions of the Association for Computational Linguistics, vol. 6, pp. 225–240, 2018. Action Editor: Philipp Koehn.
Submission batch: 10/2017; Revision batch: 2/2018; Published 4/2018.

2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 Licence.

c
(cid:13)

ScheduledMulti-TaskLearning:FromSyntaxtoTranslationEliyahuKiperwasser∗ComputerScienceDepartmentBar-IlanUniversityRamat-Gan,Israelelikip@gmail.comMiguelBallesterosIBMResearch1101KitchawanRoad,Route134YorktownHeights,NY10598.U.Smiguel.ballesteros@ibm.comAbstractNeuralencoder-decodermodelsofmachinetranslationhaveachievedimpressiveresults,whilelearninglinguisticknowledgeofboththesourceandtargetlanguagesinanimplicitend-to-endmanner.Weproposeaframeworkinwhichourmodelbeginslearningsyntaxandtranslationinterleaved,graduallyputtingmorefocusontranslation.Usingthisapproach,weachieveconsiderableimprovementsintermsofBLEUscoreonrelativelylargeparallelcor-pus(WMT14EnglishtoGerman)andalow-resource(WITGermantoEnglish)setup.1IntroductionNeuralMachineTranslation(NMT)(KalchbrennerandBlunsom,2013;Sutskeveretal.,2014;Bah-danauetal.,2014)hasrecentlybecomethestate-of-the-artapproachtomachinetranslation(Bojaretal.,2016).Oneofthemainadvantagesofneuralap-proachesistheimpressiveabilityofRNNstoactasfeatureextractorsovertheentireinput(KiperwasserandGoldberg,2016),ratherthanfocusingonlocalinformation.Neuralarchitecturesareabletoextractlinguisticpropertiesfromtheinputsentenceintheformofmorphology(Belinkovetal.,2017)orsyn-tax(Linzenetal.,2016).Néanmoins,asshowninDyeretal.(2016)andDyer(2017),systemsthatignoreexplicitlinguis-ticstructuresareincorrectlybiasedandtheytendtomakeoverlystronglinguisticgeneralizations.Pro-vidingexplicitlinguisticinformation(Dyeretal.,∗WorkcarriedoutduringsummerinternshipatIBMRe-search.2016;Kuncoroetal.,2017;NiehuesandCho,2017;SennrichandHaddow,2016;Eriguchietal.,2017;AharoniandGoldberg,2017;Nadejdeetal.,2017;Bastingsetal.,2017;Matthewsetal.,2018)hasproventobebeneficial,achievinghigherresultsinlanguagemodelingandmachinetranslation.Multi-tasklearning(MTL)consistsofbeingabletosolvesynergistictaskswithasinglemodelbyjointlytrainingmultipletasksthatlookalike.Thefi-naldenserepresentationsoftheneuralarchitecturesencodethedifferentobjectives,andtheyleveragetheinformationfromeachtasktohelptheothers.Forexample,taskslikemultiwordexpressionde-tectionandpart-of-speechtagginghavebeenfoundveryusefulforotherslikecombinatorycategoricalgrammar(CCG)parsing,chunkingandsuper-sensetagging(BingelandSøgaard,2017).Inordertoperformaccuratetranslations,wepro-ceedbyanalogytohumans.Itisdesirabletoacquireadeepunderstandingofthelanguages;et,oncethisisacquireditispossibletolearnhowtotranslategraduallyandwithexperience(includingrevisitingandre-learningsomeaspectsofthelanguages).Weproposeasimilarstrategybyintroducingthecon-ceptofScheduledMulti-TaskLearning(Section4)inwhichweproposetointerleavethedifferenttasks.Inthispaper,weproposetolearnthestructureoflanguage(throughsyntacticparsingandpart-of-speechtagging)withamulti-tasklearningstrategywiththeintentionsofimprovingtheperformanceoftaskslikemachinetranslationthatusethatstructureandmakegeneralizations.WeachieveconsiderableimprovementsintermsofBLEUscoreonarela-tivelylargeparallelcorpus(WMT14EnglishtoGer-

je

D
o
w
n
o
un
d
e
d

F
r
o
m
h

t
t

p

:
/
/

d
je
r
e
c
t
.

m

je
t
.

e
d
toi

/
t

un
c
je
/

je

un
r
t
je
c
e

p
d

F
/

d
o

je
/

.

1
0
1
1
6
2

/
t

je

un
c
_
un
_
0
0
0
1
7
1
5
6
7
6
0
0

/

/
t

je

un
c
_
un
_
0
0
0
1
7
p
d

.

F

b
oui
g
toi
e
s
t

t

o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3

226

man)andalow-resource(WITGermantoEnglish)setup.Ourdifferentschedulingstrategiesshowin-terestingdifferencesinperformancebothinthelow-resourceandstandardsetups.2SequencetoSequencewithAttentionNeuralMachineTranslation(NMT)(Sutskeveretal.,2014;Bahdanauetal.,2014)directlymodelstheconditionalprobabilityp(oui|X)ofthetargetse-quenceofwordsy=givenasourcesequencex=.Inthispaper,webaseourneuralarchitectureonthesamesequencetosequencewithattentionmodel;inthefollowingweexplainthedetailsanddescribethenuancesofourarchitecture.2.1EncoderWeusebidirectionalLSTMstoencodethesourcesentences(Graves,2012).Givenasourcesentencex=,weembedthewordsintovec-torsthroughanembeddingmatrixWS,thevectorofthei-thwordisWSxi.Wegettherepresentationsofthei-thwordbysummarizingtheinformationofneighboringwordsusingbidirectionalLSTMs(Bah-danauetal.,2014),hFi=LSTMF(hFi−1,WSxi)(1)hBi=LSTMB(hBi+1,WSxi).(2)Theforwardandbackwardrepresentationareconcatenatedtogetthebi-directionalencoderrep-resentationofwordiashi=[hFi,hBi].2.2DecoderThedecodergeneratesonetargetwordpertime-step,hence,wecandecomposetheconditionalprob-abilityaslogp(oui|X)=Xjp(yj|ouijhi(4)αi=exp(ei)Pkexp(ek).(5)Avectorrepresentation(cj)capturingtheinfor-mationrelevanttothistime-stepiscomputedbyaweightedsumoftheencodedsourcevectorrepre-sentationsusingαvaluesasweights.cj=Xiαi·hi.(6)Giventhesentencerepresentationproducedbytheattentionmechanism(cj)andthedecoderstatecapturingthetranslatedwordssofar(dj),themodeldecodesthenextwordintheoutputsequence.Thedecodingisdoneusingamulti-layerperceptronwhichreceivescjanddjandoutputsascoreforeachwordinthetargetvocabulary:gj=tanh(W1Decdj+W1Attcj)(7)uj=tanh(gj+W2Decdj+W2Attcj)(8)p(yj|oui
Transactions of the Association for Computational Linguistics, vol. 6, pp. 225–240, 2018. Action Editor: Philipp Koehn. image
Transactions of the Association for Computational Linguistics, vol. 6, pp. 225–240, 2018. Action Editor: Philipp Koehn. image
Transactions of the Association for Computational Linguistics, vol. 6, pp. 225–240, 2018. Action Editor: Philipp Koehn. image

Télécharger le PDF