FUNCIÓN DE ENFOQUE:

FUNCIÓN DE ENFOQUE:
Connectivity, Cognición, and Consciousness

Thalamocortical contribution to flexible
learning in neural systems

Mien Brabeeba Wang1,2 and Michael M. Halassa1

1Department of Brain and Cognitive Science, Instituto de Tecnología de Massachusetts, Cambridge, MAMÁ, EE.UU
2Computer Science and Artificial Intelligence Laboratory, Instituto de Tecnología de Massachusetts, Cambridge, MAMÁ, EE.UU

Palabras clave: Meta-learning, Credit assignment, Continual learning, Thalamocortical interactions,
Basal ganglia, Thalamus

un acceso abierto

diario

ABSTRACTO

Animal brains evolved to optimize behavior in dynamic environments, flexibly selecting
actions that maximize future rewards in different contexts. A large body of experimental work
indicates that such optimization changes the wiring of neural circuits, appropriately mapping
environmental input onto behavioral outputs. A major unsolved scientific question is how
optimal wiring adjustments, which must target the connections responsible for rewards, can be
accomplished when the relation between sensory inputs, action taken, and environmental
context with rewards is ambiguous. The credit assignment problem can be categorized into
context-independent structural credit assignment and context-dependent continual learning. En
this perspective, we survey prior approaches to these two problems and advance the notion
that the brain’s specialized neural architectures provide efficient solutions. Within this
estructura, the thalamus with its cortical and basal ganglia interactions serves as a systems-
level solution to credit assignment. Específicamente, we propose that thalamocortical interaction is
the locus of meta-learning where the thalamus provides cortical control functions that
parametrize the cortical activity association space. By selecting among these control functions,
the basal ganglia hierarchically guide thalamocortical plasticity across two timescales to
enable meta-learning. The faster timescale establishes contextual associations to enable
behavioral flexibility, while the slower one enables generalization to new contexts.

RESUMEN DEL AUTOR

Deep learning has shown great promise over the last decades, allowing artificial neural
networks to solve difficult tasks. The key to success is the optimization process by which task
errors are translated to connectivity patterns. A major unsolved question is how the brain
optimally adjusts the wiring of neural circuits to minimize task error analogously. En nuestro
perspectiva, we advance the notion that the brain’s specialized architecture is part of the
solution and spell out a path towards its theoretical, computational, and experimental testing.
Específicamente, we propose that the interaction between the cortex, thalamus, and basal ganglia
induces plasticity in two timescales to enable flexible behaviors. The faster timescale
establishes contextual associations to enable behavioral flexibility, while the slower one
enables generalization to new contexts.

Citación: Wang, METRO. B., & en un abrazo, METRO. METRO.
(2022). Thalamocortical contribution to
flexible learning in neural systems.
Neurociencia en red, 6(4), 980–997.
https://doi.org/10.1162/netn_a_00235

DOI:
https://doi.org/10.1162/netn_a_00235

Recibió: 26 Septiembre 2021
Aceptado: 19 Enero 2022

Conflicto de intereses: Los autores tienen
declaró que no hay intereses en competencia
existir.

Autor correspondiente:
Michael M. en un abrazo
mhalassa@mit.edu

Editor de manejo:
Randy McIntosh

Derechos de autor: © 2022
Instituto de Tecnología de Massachusetts
Publicado bajo Creative Commons
Atribución 4.0 Internacional
(CC POR 4.0) licencia

La prensa del MIT

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

t

/

/

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

.

t

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

Reward prediction error:
A quantity represented by the
difference between the expected
reward and actual reward.

Credit assignment:
A computational problem to
determine which stimulus, acción,
internal states, and context lead to
outcome.

Continual learning:
A computational problem to learn
tasks sequentially to both learn new
tasks faster and not forget old tasks.

INTRODUCCIÓN

Learning to flexibly choose appropriate actions in uncertain environments is a hallmark of
intelligence (Molinero & cohen, 2001; NVI, 2009; Thorndike, 2017). When animals explore unfa-
miliar environments, they tend to reinforce actions that lead to unexpected rewards. A com-
mon notion in contemporary neuroscience is that such behavioral reinforcement emerges from
changes in synaptic connectivity, where synapses that contribute to the unexpected reward are
strengthened (Abbott & nelson, 2000; Bliss & Lomo, 1973; Dayán & Abbott, 2005; Hebb,
2002; Whittington & Hombre rico, 2019). A prominent model for connecting synaptic to behav-
ioral reinforcement is dopaminergic innervation of basal ganglia (BG), where dopamine
(Y) carries the reward prediction error (RPE) signals to guide synaptic learning (Bamford,
Wightman, & Sulzer, 2018; Bayer & Vislumbres, 2005; montesco, Dayán, & Sejnowski,
1996; Schultz, Dayán, & montesco, 1997). This circuit motif is thought to implement a basic
form of the reinforcement learning algorithm (Houk, davis, & Beiser, 1994; morris, Nevet,
Arkadir, Vaadia, & Bergman, 2006; Roesch, Calu, & Schoenbaum, 2007; Suri & Schultz,
1999; R. suton & Aprender, 2018; R. S. suton & Aprender, 1990; Wickens & Kotter, 1994), cual
has had much success in explaining simple Pavlovian and instrumental conditioning (Ikemoto
& Panksepp, 1999; NVI, 2009; R. suton & Aprender, 2018; R. S. suton & Aprender, 1990). Sin embargo,
it is unclear how this circuit can reinforce the appropriate connections in complex natural
environments where animals need to dynamically map sensory inputs to different action in
a context-dependent way. If one naively credits all synapses with the RPE signals, the learning
will be highly inefficient since different cues, contextos, and actions contribute to the RPE sig-
nals differently. To properly credit the cues, contexto, and actions that lead to unexpected
reward is a challenging problem, known as the credit assignment problem (Lillicrap, Santoro,
Marris, Akerman, & Hinton, 2020; Minsky, 1961; Rumelhart, Hinton, & williams, 1986;
Whittington & Hombre rico, 2019).

One can roughly categorize the credit assignment into context-independent structural
credit assignment and context-dependent continual learning. In structural credit assignment,
animals may make decisions in a multi-cue environment and should be able to credit those
cues that contribute to the rewarding outcome. Similarmente, if actions are being chosen based
on internal decision variables, then the underlying activity states must also be reinforced. En
such cases, neurons that are selective to external cues or internal latent variables need to
adjust their downstream connectivity based on its contribution of their downstream targets to
the RPE. This is a challenging computation to implement because, for upstream neurons, el
RPE will be dependent on downstream neurons that are several connections away. Para
ejemplo, a sensory neuron needs to know the action chosen in the motor cortex to selec-
tively credit the sensory synapses that contribute to the action. In continual learning, animals
not only need to appropriately credit the sensory cues and actions that lead to the reward
but also need to credit the sensorimotor combination in the right context to retain the
behaviors learned from different contexts and even to generalize to novel contexts. Allá-
delantero, animals can continually learn and generalize across different contexts while retaining
behaviors in familiar contexts. Por ejemplo, when one is in the United States, one learns to
first look left before crossing the street, whereas in the United Kingdom, one learns to look
right instead. Sin embargo, after spending time in the United Kingdom, someone from the
United States should not unlearn the behavior of looking left first when they return home
because their brain ought to properly assign the credit to a different context. Además,
once one learns how to cross the street in the United States, it is much easier to learn how
to cross the street in the United Kingdom because the brain flexibly generalize behaviors
across contexts.

Neurociencia en red

981

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

/

/

t

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

t

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

Backpropagation:
An algorithm to compute the error
gradient of an artificial neural
network through chain rules.

In this perspective, we will first go over common approaches from machine learning to
tackle these two credit assignment problems. Al hacerlo, we highlight the challenge in their
efficient implementation within biological neural circuits. We also highlight some recent pro-
posals that advance the notion of specialized neural hardware that approximate more general
solutions for credit assignment (Fiete & Seung, 2006; Ketz, Morkonda, & O’Reilly, 2013;
Kornfeld et al., 2020; Kusmierz, Isomura, & Toyoizumi, 2017; Lillicrap, Cownden, Tweed,
& Akerman, 2016; Liu, Herrero, Mihalas, Shea-Brown, & Sümbül, 2020; O’Reilly, 1996;
O’Reilly, Russin, Zolfaghar, & Rohrlich, 2021; Richards & Lillicrap, 2019; Roelfsema &
Holtmaat, 2018; Roelfsema & van Ooyen, 2005; Sacramento, Ponte Costa, bengio, & Senn,
2018; Schiess, Urbanczik, & Senn, 2016; Zenke & Ganguli, 2018). Along these lines, nosotros pro-
pose an efficient systems-level solution involving the thalamus and its interaction with the
cortex and BG for these two credit assignment problems.

COMMON MACHINE LEARNING APPROACHES TO CREDIT ASSIGNMENT

One solution to structural credit assignment in machine learning is backpropagation (Rumelhart
et al., 1986). Backpropagation recursively computes the vector-valued error signal for synapses
based on their contribution to the error signal. There is much empirical success of backpropa-
gation in surpassing human performance in supervised learning such as image recognition
(Él, zhang, Ren, & Sol, 2016; Krizhevsky, Sutskever, & Hinton, 2012) and reinforcement
learning such as playing the game of Go and Atari (Mnih et al., 2015; Schrittwieser et al.,
2020; Silver et al., 2016; Silver et al., 2017). Además, comparing artificial networks trained
with backpropagation with neural responses from the ventral visual stream of nonhuman pri-
mates shows comparable internal representations (Cadieu et al., 2014; Yamins et al., 2014).
Despite its empirical success in superhuman-level performance and matching the internal
representation of actual brains, backpropagation may not be straightforward to implement
in biological neural circuits, as we explain below.

In its most basic form, backpropagation requires symmetric connections between neurons
(forward and backward connections). Mathematically, we can write down the backpropaga-
tion in Equation 1:

dónde

δWi ∝

∂E
∂Wi

d
¼ eif ai−1

Þ⊤;

ei ¼ W T

iþ1eiþ1 ∘ f 0 aið

Þ;

(1)

E is the total error, ei is the vector error at layer i, Wi is the synaptic weight connecting layer i − 1
to layer i, and f is the nonlinearity. Intuitivamente, this is saying that the change of synaptic weight Wi
is computed by a Hebbian learning rule between backpropagation error ei and activity from last
layer f(ai−1), while the backpropagation error is computed by backpropagating the error in the
next layer through symmetric feedback weights W ⊤
iþ1. En tono rimbombante, in this algorithm, error sig-
nals do not alter the activity of neurons in the preceding layers and instead operate indepen-
dently from the feedforward activity. Sin embargo, such arrangement is not observed in the brain;
symmetric connections across neurons are not a universal feature of circuit organization, y
biological neurons may encode both feedforward inputs and errors through changes in spike
producción (changes in activity; Crick, 1989; Richards & Lillicrap, 2019). Por lo tanto, it is hard to
imagine how the basic form of backpropagation (symmetry and error/activity separation) es
physically implemented in the brain.

Neurociencia en red

982

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

/

/

t

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

.

t

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

Catastrophic forgetting:
A phenomenon in which the network
forgets about the previous tasks upon
learning new tasks.

Además, while an animal can continually learn to behave across different contexts,
artificial neural networks trained by backpropagation struggle to learn and remember different
tasks in different contexts: a problem known as catastrophic forgetting (Francés, 1999; Kemker,
McClure, Abitino, Hayes, & Kanan, 2018; Kumaran, Hassabis, & McClelland, 2016; McCloskey
& cohen, 1989; Parisi, Kemker, Parte, Kanan, & Wermter, 2019). Específicamente, this problem
occurs when the tasks are trained sequentially because the weights optimized for former tasks
will be modified to fit the later tasks. One of the common solutions is to interleave the tasks
from different contexts to jointly optimize performance across contexts by using an episodic
memory system and replay mechanism (Kumaran et al., 2016; McClelland, McNaughton, &
O’Reilly, 1995). This approach has received empirical success in artificial neural networks,
including learning to play many Atari games (Mnih et al., 2015; Schrittwieser et al., 2020).
Sin embargo, since one needs to store past training data in memory to replay during learning, este
approach demands a high computational overhead and can be is inefficient as the number of
the contexts increases. Por otro lado, humans and animals acquire diverse sensorimotor
skills in different contexts throughout their life span: a feat that cannot be solely explained by
memory replay (METRO. METRO. Murray, Lewkowicz, Amedi, & Wallace, 2016; Parisi et al., 2019;
Fuerza & Schlaggar, 2017; Zenke, Gerstner, & Ganguli, 2017). Por lo tanto, biological neural
circuits are likely to employ other solutions to continual learning in addition to memory replay.

Por lo tanto, to solve these two credit assignment problems in the brain, one needs to seek
different solutions. One of the pitfalls of backpropagation is that it is a general algorithm that
works on any architecture. Sin embargo, actual brains are collections of specialized hardware put
together in a specialized way. It can be conceived that through clever coordination between
different cell types and different circuits, the brains can solve the credit assignment problem by
leveraging its specialized architectures. Along this line of ideas, many investigators have pro-
posed cellular (Fiete & Seung, 2006; Kornfeld et al., 2020; Kusmierz et al., 2017; Liu et al.,
2020; Richards & Lillicrap, 2019; Sacramento et al., 2018; Schiess et al., 2016) and circuit-level
mechanisms (Lillicrap et al., 2016; O’Reilly, 1996; Roelfsema & Holtmaat, 2018; Roelfsema &
van Ooyen, 2005) to assign credit appropriately. In this perspective, we would like to advance
the notion that the specialized hardware arrangement also happens at the system level and pro-
pose that the thalamus and its interaction with basal ganglia and the cortex serve as a system-
level solution for these three types of credit assignment.

A PROPOSAL: THALAMOCORTICAL–BASAL GANGLIA INTERACTIONS ENABLE
META-LEARNING TO SOLVE CREDIT ASSIGNMENT

To motivate the notion of thalamocortical–basal ganglia interactions being a potential solution
for credit assignment, we will start with a brief introduction. The cortex, thalamus, and basal
ganglia are the three major components of the mammalian forebrain—the part of the brain to
which high-level cognitive capacities are attributed to (Alexander, DeLong, & Strick, 1986;
malo, Kayser, & D'Esposito, 2010; Cox & Witten, 2019; Makino, Hwang, Hedrick, &
Komiyama, 2016; Molinero, 2000; Molinero & cohen, 2001; NVI, 2009; SEO, Sotavento, & Averbeck,
2012; Wolff & Vann, 2019). Each of these components has its specialized internal architec-
turas; the cortex is dominated by excitatory neurons with extensive lateral connectivity profiles
(Fuster, 1997; Rakic, 2009; Cantante, Sejnowski, & Rakic, 2019), the thalamus is grossly divided
into different nuclei harboring mostly excitatory neurons devoid of lateral connections (harris
et al., 2019; jones, 1985; sherman & Guillery, 2005), and the basal ganglia are a series of
inhibitory structures driven by excitatory inputs from the cortex and thalamus (Gerfen &
Bolam, 2010; Lanciego, Luquin, & Obeso, 2012; Nambu, 2011) (Cifra 1). A popular view
within system neuroscience stipulates that BG and the cortex underwent different learning

Neurociencia en red

983

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

/

/

t

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

t

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

Cifra 1. Distinct architectures of cortex, thalamus, and basal ganglia. Cortex is largely composed
of excitatory neurons with extensive recurrent connectivity. Thalamus consists of mostly excitatory
neurons without lateral connections. Basal ganglia consist of mostly inhibitory neurons driven by
cortical and thalamic inputs, and the corticostriatal plasticity is modulated by dopamine.

paradigms, where BG is involved in reinforcement learning while the cortex is involved in
unsupervised learning (Doya, 1999, 2000). Específicamente, the input structure of the basal ganglia
known as the striatum is thought to be where reward gated plasticity takes place to implement
aprendizaje reforzado (Bamford et al., 2018; Cox & Witten, 2019; Hikosaka, kim, Yasuda, &
Yamamoto, 2014; Kornfeld et al., 2020; NVI, 2009; Perrin & Venance, 2019). One such evi-
dence is the high temporal precision of DA activity in the striatum. To accurately attribute the
action that leads to positive RPE, DA is released into the relevant corticostriatal synapses.
Sin embargo, DA needs to disappear quickly to prevent the next stimulus-response combination
from being reinforced. In the striatum, this elimination process is carried out by dopamine
active transporter (DAT) to maintain a high temporal resolution of DA activity on a timescale
of around 100 ms–1 s to support reinforcement learning (Cass & Gerhardt, 1995; Ciliax et al.,
1995; Garris & Wightman, 1994). A diferencia de, although the cortex also has dopaminergic
innervation, cortical DAT expression is low and therefore DA levels may change at a timescale
that is too slow to support reinforcement learning (Cass & Gerhardt, 1995; Garris & Wightman,
1994; Lapish, Kroener, Durstewitz, Lavin, & Seamans, 2007; Seamans & robbins, 2010) pero
instead supports other processes related to learning (Badre et al., 2010; Molinero & cohen, 2001).
De hecho, ample evidence indicates that cortical structures undergo Hebbian-like long-term
potentiation (LTP) and long-term depression (LIMITADO; cocinero & Bear, 2010; Feldman, 2009;
kirkwood, Rioult, & Bear, 1996). Sin embargo, despite the unsupervised nature of these processes,
cortical representations are task-relevant and include appropriate sensorimotor mappings that
lead to rewards (Allen et al., 2017; Donahue & Sotavento, 2015; Enel, Wallis, & Rich, 2020; Jacobs &
Moghaddam, 2020; Petersen, 2019; Tsutsui, Hosokawa, Yamada, & Iijima, 2016). How could
this arise from an unsupervised process? One possible explanation is that basal ganglia acti-
vate the appropriate cortical neurons during behaviors and the cortical network collectively
consolidates high-reward sensorimotor mappings via Hebbian-like learning (Andalman & Fee,
2009; Ashby, Ennis, & Spiering, 2007; Hélie, Ell, & Ashby, 2015; Tesileanu, Olveczky, &
Balasubramanian, 2017; Warren, Tumer, Charlesworth, & Brainard, 2011). Previous computa-
tional accounts of this process have emphasized a consolidation function for the cortex in this
proceso, which naively would beg the question of why duplicate a process that seems to func-
tion well in the basal ganglia and perhaps include a lot of details of the associated experience?

Neurociencia en red

984

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

/

t

/

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

t

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

Meta-learning:
A learning paradigm in which a
network learns how to learn more
efficiently.

Cifra 2. Two views of learning in the cortex. (A) One possible view is that the Hebbian cortical
plasticity consolidates the sensorimotor mapping from BG to learn a stimulus-action mapping at =
F(st). (B) We propose that thalamocortical systems perform meta-learning by consolidating the
teaching signals from BG to learn a context-dependent mapping at = fc(st), where the context c is
computed by past stimulus history and represented by different thalamic activities.

The answer to this question is the core of our proposal. We propose that the learning pro-
cess is not a duplication, but instead that the reinforcement process in the basal ganglia selects
thalamic control functions that subsequently activate cortical associations to allow flexible
mappings across different contexts (Cifra 2).

To understand this proposition, we need to take a closer look at the involvement of these
distinct network elements in task learning. Learning in basal ganglia happens in corticostriatal
synapses where the basic form of reinforcement learning is implemented. Específicamente, the coac-
tivation of sensory and motor cortical inputs generates eligibility traces in corticostriatal synap-
ses that get captured by the presence or absence of DA (Fee & Goldberg, 2011; Fiete, Fee, &
Seung, 2007; Kornfeld et al., 2020). This reinforcement learning algorithm is fast at acquiring
simple associations but slow at generalization to other behaviors. Por otro lado, the cortical
plasticity operates in a much slower timescale but seems to allow flexible behaviors and fast
generalización (kim, Johnson, Cilles, & Gold, 2011; Mantener, Susillo, shenoy, & nuevosome,
2013; Molinero, 2000; Molinero & cohen, 2001). How does the cortex exhibit slow synaptic plasticity
and flexible behaviors at the same time? An explanatory framework is meta-learning (Botvinick
et al., 2019; Wang y cols., 2018), where the flexibility arises from network dynamics and the
generalization emerges from slow synaptic plasticity across different contexts. En otras palabras,
synaptic plasticity stores a higher order association between contexts and sensorimotor associ-
ations while the network dynamics switches between different sensorimotor associations based
on this higher order association. Sin embargo, properly arbitrating between synaptic plasticity and
network dynamics to store such higher order association is a nontrivial task (Sohn, Meirhaeghe,
Rajalingham, & Jazayeri, 2021). We propose that the thalamocortical system learns these
dinámica, where the thalamus provides control nodes that parametrize the cortical activity asso-
ciation space. Basal ganglia inputs to the thalamus learn to select between these different control
nodos, directly implementing the interface between weight adjustment and dynamical controls.
Our proposal rests on the following three specific points.

Primero, building on a line of the literature that shows diverse thalamocortical interaction in
sensorial, cognitivo, and motor cortex, we propose that thalamic output may be described as
control functions over cortical computations. These control functions can be purely in the
sensory domain like attentional filtering, in the cognitive domain like manipulating working
memory, or in the motor domain like preparation for movement (Bolkan et al., 2017; W.. guo,
Clause, Barth-Maron, & Polley, 2017; z. V. Guo et al., 2017; Mukherjee et al., 2020; Rikhye,
Gilra, & en un abrazo, 2018; Saalmann & Kastner, 2015; Schmitt et al., 2017; Tanaka, 2007;
Wimmer et al., 2015; zhou, Schäfer, & Desimone, 2016). These functions directly relate

Neurociencia en red

985

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

/

t

/

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

t

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

thalamic activity patterns to different cortical dynamical regimes and thus offer a way to estab-
lish higher order association between context and sensorimotor mapping within the thalamo-
cortical pathways. Segundo, based on previous studies on direct and indirect BG pathways that
influence most cortical regions (Hunnicutt et al., 2016; Jiang & kim, 2018; Nakajima, Schmitt,
& en un abrazo, 2019; Peters, Fabre, Steinmetz, harris, & Carandini, 2021), we propose that BG
hierarchically selects these thalamic control functions to influence activities of the cortex
toward rewarding behavioral outcomes. Por último, we propose that thalamocortical structure con-
solidates the selection of BG through a two-timescale Hebbian learning process to enable
meta-learning. Específicamente, the faster corticothalamic plasticity learns the higher order associ-
ation that enables flexible contextual switching with different thalamic patterns (Marton,
Seifikar, Luongo, Sotavento, & Sohal, 2018; Rikhye et al., 2018), while the slower cortical plasticity
learns the shared representations that allow generalization to new behaviors. Abajo, we will
go over the supporting literature that leads us to this proposal.

MORE GENERAL ROLES OF THALAMOCORTICAL INTERACTION AND
BASAL GANGLIA

Classical literature has emphasized the role of the thalamus in transmitting sensory inputs to
the cortex. This is because some of the better studied thalamic pathways are those connected
to sensors on one end and primary cortical areas on another (Hubel & Wiesel, 1961; Lien &
Scanziani, 2018; Reinagel, Godwin, sherman, & Koch, 1999; sherman & Spear, 1982; Usrey,
alonso, & Reid, 2000). From that perspective, thalamic neurons being devoid of lateral
connection transmit their inputs (p.ej., from the retina in the case of the lateral geniculate
núcleo, LGN) to the primary sensory cortex ( V1 in this same example case), and the input
transformación (center-surround to oriented edges) occurs within the cortex (Hoffmann, Piedra,
& sherman, 1972; Hubel & Wiesel, 1962; Lien & Scanziani, 2018; Usrey et al., 2000). In many
casos, these formulations of thalamic “relay” have generalized to how motor and cognitive
thalamocortical interactions may be operating. Sin embargo, in contrast to the classical relay view
of the thalamus, more recent studies have shown diverse thalamic functions in sensory, cog-
nitive, and motor processing (Bolkan et al., 2017; W.. Guo et al., 2017; z. V. Guo et al., 2017;
Rikhye et al., 2018; Saalmann & Kastner, 2015; Schmitt et al., 2017; Tanaka, 2007; Wimmer
et al., 2015; Zhou y cols., 2016). For example in mice, sensory thalamocortical transmission can
be adjusted based on prefrontal cortex (PFC)-dependent, top-down biasing signals transmitted
through nonclassical basal ganglia pathways involving the thalamic reticular nucleus (TRN;
Nakajima et al., 2019; Phillips, Kambi, & Saalmann, 2016; Wimmer et al., 2015). Curiosamente,
these task-relevant PFC signals themselves require long-range interactions with the associative
mediodorsal (Maryland) thalamus to be initiated, maintained, and flexibly switched (Rikhye et al.,
2018; Schmitt et al., 2017; Wimmer et al., 2015). One can also observe nontrivial control
functions in the motor thalamus. Motor preparatory activities in the anterior motor cortex
(ALM) show persistent activities that predicted future actions. Curiosamente, the motor thalamus
also shows similar preparatory activities that predict future actions and by optogenetically
manipulating the motor thalamus activities, the persistent activities in ALM quickly diminished
(z. V. Guo et al., 2017). Recientemente, Mukherjee, Justicia, Wimmer, and Halassa (2021) discovered
two cell types within MD thalamus differentially modulate the cortical evidence accumulation
dynamics depending on whether the evidence is conflicting or sparse to boost the signal-to-
noise ratio in decision-making. Based on the above studies, we propose that the thalamus
provides a set of control functions to the cortex. Específicamente, cortical computations may be
flexibly switched to different dynamical modes by activating a particular thalamic output that
corresponds to that mode.

Neurociencia en red

986

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

t

/

/

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

.

t

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

Por otro lado, the selective role of BG in motor and cognitive control also has dom-
inated the literature because thalamocortical–basal ganglia interaction is the most well studied
in frontal systems (Cox & Witten, 2019; Makino et al., 2016; McNab & Klingberg, 2008;
Monchi, Petrides, Strafella, Worsley, & Doyon, 2006; Seo et al., 2012). Sin embargo, classical
and contemporary studies have recognized that all cortical areas, including primary sensory
areas, project to the striatum (Hunnicutt et al., 2016; Jiang & kim, 2018; Peters et al., 2021).
Similarmente, the basal ganglia can project to the more sensory parts of the thalamus through lesser
studied pathways to influence the sensory cortex (Hunnicutt et al., 2016; Nakajima et al.,
2019; Peters et al., 2021). Específicamente, a nonclassical BG pathway projects to TRN, cual
in turn modulates the activities of LGN to influence sensory thalamocortical transmission
(Nakajima et al., 2019). Por otro lado, it has also been argued that BG is involved in
gating working memory (McNab & Klingberg, 2008; Voytek & Caballero, 2010). This shows that
BG has a much more general role than classical action and action strategy selection. Allá-
delantero, combining with our proposals on thalamic control functions, we propose that BG hier-
archically selects different thalamic control functions to influence all cortical areas in different
contexts through reinforcement learning.

Además, there are series of the work that indicates the role of BG to guide plasticity in
thalamocortical structures (Andalman & Fee, 2009; Fiete et al., 2007; Hélie et al., 2015;
Mehaffey & Doupe, 2015; Tesileanu et al., 2017). En particular, there is evidence that BG is
critical for the initial learning and less involved in the automatic behaviors once the behaviors
are learned across different species. In zebra finches, the lesion of BG in adult zebra finch has
little effect on song production, but the lesion of BG in juvenile zebra finch prevents the bird
from learning the song (Fee & Goldberg, 2011; Scharff & Nottebohm, 1991; Sohrabji,
Nordeen, & Nordeen, 1990). Similar patterns can be observed in people with Parkinson’s dis-
ease. Parkinson’s patients who have a reduction of DA and striatal defects have troubles in
solving procedural learning tasks but can produce automatic behaviors normally (Asmus,
Huber, Gasser, & Schöls, 2008; Soliveri, Marrón, Jahanshahi, Caraceni, & Marsden, 1997;
Thomas-Ollivier et al., 1999). This behavioral evidence suggests that thalamocortical struc-
tures consolidate the learning from BG as the behaviors become more automatic. Además,
on the synaptic level, a songbird learning circuit also demonstrates this cortical consolidation
motif (Mehaffey & Doupe, 2015; Tesileanu et al., 2017). In a zebra finch, the premotor nucleus
HVC (a proper name) projects to the motor nucleus robust nucleus of the arcopallium (RA) a
produce the song. Por otro lado, RA also receives BG nucleus Area X mediated inputs
from the lateral nucleus of the medial nidopallium (LMAN). The latter pathway is believed to
be a locus of reinforcement learning in the songbird circuit. By burst stimulating both input
pathways in different time lags, one can discover that HVC-RA and LMAN-RA underwent
opposite plasticity (Mehaffey & Doupe, 2015). This suggests that the learning is gradually
transferred from LMAN-RA to HVC-RA pathway (Fee & Goldberg, 2011; Mehaffey & Doupe,
2015; Tesileanu et al., 2017). This indicates a general role of BG as the trainer for cortical
plasticity.

THE THALAMOCORTICAL STRUCTURE CONSOLIDATES THE BG SELECTIONS
ON THALAMIC CONTROL FUNCTIONS IN DIFFERENT TIMESCALES TO
ENABLE META-LEARNING

En esta sección, in addition to BG’s role as the trainer for cortical plasticity, we further propose
that BG is the trainer in two different timescales for thalamocortical structures to enable meta-
aprendiendo. The faster timescale trainer trains the corticothalamic connections to select the

Neurociencia en red

987

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

t

/

/

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

.

t

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

Cifra 3. Two-timescale learning in thalamocortical structures. We propose that one can learn the
thalamocortical structure to enable meta-learning by applying the general network motif in two dif-
ferent timescales. Primero, one can learn the corticothalamic connections by applying the motif on the
blue loop with a faster timescale. This allows the network to consolidate flexible switching behav-
iors. Segundo, one can learn the cortical connections by applying the motif on the orange loop in a
slower timescale. This allows cortical neurons to develop a task-relevant shared representation that
can generalize across contexts.

appropriate thalamic control functions in different contexts, while the slower timescale trainer
trains the cortical connections to form a task-relevant and generalizable representation.

From the songbird example, we see how thalamocortical structures can consolidate sim-
ple associations learned through the basal ganglia. To enable meta-learning, we propose that
this general network consolidation motif operates over two different timescales within
thalamocortical–basal ganglia interactions (Cifra 3). Primero, combining the idea of thalamic
outputs as control functions over cortical network activity patterns and the basal ganglia
selecting such functions, we frame learning in basal ganglia as a process that connects con-
textual associations (higher order) with the appropriate dynamical control that maximizes
reward at the sensorimotor level (lower order). Under this framing, corticothalamic plasticity
consolidates the higher order association within a fast timescale. This allows flexible switch-
ing between different thalamic control functions in different contexts. Por otro lado, el
cortical plasticity consolidates the sensorimotor association over a slow timescale to allow
shared representation that can generalize across different contexts. As the thalamocortical
structures learn the higher order association, the behaviors become less BG-dependent
and the network is able to switch between different thalamic control functions to induce
different sensorimotor mappings in different contexts. By having two learning timescales, años-
mals can conceivably both adapt quickly in changing environments with fast learning of
corticothalamic connections and maintain the important information across the environment
in the cortical connections. One should note that this separation of timescales is indepen-
dent from different timescales across cortex (gao, van den Brink, Pfeffer, & Voytek, 2020;
j. D. Murray et al., 2014). While different timescales across cortex allows animals to process
information differentially, the separation of corticothalmic and cortical plasticity allows the
thalamocortical system to learn the higher contextual association to modulate cortical
dynamics flexibly.

Some anatomical observations support this idea. The thalamostriatal neurons have a more
modulatory role to the cortical dynamics in a diffusive projection, while thalamocortical neu-
rons have a more driver role to the cortical dynamic in a topographically restricted dense pro-
jection (sherman & Guillery, 2005). This indicates that thalamostriatal neurons might serve as
the role of control functions in the faster consolidation loop with the feedback to striatum to
conduct credit assignment. Por otro lado, thalamocortical neurons might be more
involved in the slower consolidation loop with the feedback to striatum coming from the cor-
tex to train the common cortical representation across contexts.

Neurociencia en red

988

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

/

t

/

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

.

t

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

En resumen, this two-timescale network consolidation scheme provides a general way for
BG to guide plasticity in the thalamocortical architecture to enable meta-learning and thus
solves structural credit assignment as a special case. Along these lines, experimental evidence
supports the notion that when faced with multisensory inputs, the BG can selectively disinhibit
a modality-specific subnetwork of the thalamic reticular nucleus (TRN) to filter out the sensory
inputs that are not relevant to the behavior outcomes and thus solve the structural credit
assignment problem.

In the discussion above, we discuss our proposal under a general formulation of thalamic
control functions. In the next section, we will specify other thalamic control functions sug-
gested by recent studies and observe how they can solve continual learning under this
framework as well.

THE THALAMUS SELECTIVELY AMPLIFIES FUNCTIONAL CORTICAL CONNECTIVITY
AS A SOLUTION TO CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

One of the pitfalls of the artificial neural network is catastrophic forgetting. If one trains an
artificial neural network on a sequence of tasks, the performance on the older task will quickly
deteriorate as the network learns the new task (Francés, 1999; Kemker et al., 2018; Kumaran
et al., 2016; McCloskey & cohen, 1989; Parisi et al., 2019). Por otro lado, the brain can
achieve continual learning, the ability to learn different tasks in different contexts without cat-
astrophic forgetting and even generalize the performance to novel context (Lewkowicz, 2014;
METRO. METRO. Murray et al., 2016; Fuerza & Schlaggar, 2017; Zenke, Gerstner, & Ganguli, 2017).
There are three main approaches in machine learning to deal with catastrophic forgetting.
Primero, one can use the regularization method to mostly update the weights that are less impor-
tant to the prior tasks (Fernando et al., 2017; Jung, Ju, Jung, & kim, 2018; Kirkpatrick et al.,
2017; li & Hoiem, 2018; Maltoni & Lomonaco, 2019; Zenke, piscina, & Ganguli, 2017). Este
idea is inspired by experimental and theoretical studies on how synaptic information is selec-
tively protected in the brain (Benna & Fusi, 2016; Cichon & Gan, 2015; Fusi, Dibujó, & Abbott,
2005; Hayashi-Takagi et al., 2015; Cual, Cacerola, & Gan, 2009). Sin embargo, it is unclear how to
biologically compute the importance of each synapse to prior tasks nor how to do global reg-
ularization locally. Segundo, one can also use a dynamic architecture in which the network
expands the architecture by allocating a subnetwork to train with the new information while
preserving old information (Cortes, Gonzalvo, Kuznetsov, Mohri, & Cual, 2017; Draelos et al.,
2017; Rusu et al., 2016; xiao, zhang, Cual, Peng, & zhang, 2014). Sin embargo, this type of
method is not scalable since the number of neurons needs to scale linearly with the number
of tasks. Por último, one can use a memory buffer to replay past tasks to avoid catastrophic forget-
ting by interleaving the experience of the past tasks with the experience of the present task
(Kemker & Kanan, 2018; Kumaran et al., 2016; McClelland et al., 1995; espinilla, Sotavento, kim, &
kim, 2017). Sin embargo, this type of method cannot be the sole solution, as the memory buffer
needs to scale linearly with the number of tasks and potentially the number of trials.

We propose that the thalamus provides another way to solve continual learning and cata-
strophic forgetting via selectively amplifying parts of the cortical connections in different con-
textos (Cifra 4). Específicamente, we propose that a population of thalamic neurons topographically
amplify the connectivity of cortical subnetworks as their control functions. During a behavioral
tarea, BG selects subsets of the thalamus that selectively amplify the connectivity of cortical
subnetworks. Because of the reinforcement learning in BG, the subnetwork that is the most
relevant to the current task will be more preferentially activated and updated. By selecting only
the relevant subnetwork to activate in one context, the thalamus protects other subnetworks

Neurociencia en red

989

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

t

/

/

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

.

t

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

Cifra 4. A thalamocortical architecture with interaction with BG for continual learning. During
task execution, BG selects thalamic neurons that amplify the relevant cortical subnetwork. este profesional-
tects other parts of the network that are important for another context from being overwritten. Cuando
the other task comes, BG selects other thalamic neurons and since the synapses are protected from
the last task, animals can freely switch from different tasks without forgetting the previous tasks.
Además, as the corticothalamic synapses learn how to select the right thalamic neurons in a
different context (blue dashed line), task execution can become less BG dependent.

that can have useful information in another context from being overwritten. The corticothala-
mic structures can then consolidate these BG-guided flexible switching behaviors via our
proposed network motif, and the switching becomes less BG-dependent. Además, nuestro
proposed solution has implications on generalization as well. Different tasks can have princi-
ples in common that can be transferred. Por ejemplo, although the rules of chess and Go are
very different, players in both games all need to predict what the other players are going to do
and counterattack based on the prediction. Since BG selects the subnetwork at each hierarchy
that is most relevant to the current tasks, in addition to selecting different subnetworks to pre-
vent catastrophic forgetting, BG can also select subnetworks that are beneficial to both tasks as
well to achieve generalization. Por lo tanto, the cortex can develop a modular hierarchical rep-
resentation of the world that can be easily generalized.

The idea of protecting relevant information from the past tasks to be overwritten has been
applied before computationally and has decent success in combating catastrophic forgetting in
aprendizaje profundo (Kirkpatrick et al., 2017). Experimentally, we also have found that thalamic neu-
rons selectively amplify the cortical connectivity to solve the continual learning problem. en un
task where the mice need to switch between different sets of task cues that guided the attention
to the visual or auditory target, the performance of the mice does not deteriorate much after
switching to the original context, which is an indication of continual learning (Rikhye et al.,
2018). Through electrophysiological recording of PFC and mediodorsal thalamic nucleus
(Maryland) neuronas, we discovered that PFC neurons preferentially code for the rule of the attention,
while MD neurons preferentially code for the contexts of different sets of the cues. Thalamic
neurons that encode the task-relevant context translate this neural representation into the
amplification of cortical activity patterns associated with that context (despite the fact that cor-
tical neurons themselves only encode the context implicitly). These experimental observations
are consistent with our proposed solution: By incorporating the thalamic population that can
selectively amplify connectivity of cortical subnetworks, the thalamus and its interaction with
cortex and BG solve the continual learning problem and prevent catastrophic forgetting.

Neurociencia en red

990

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

/

t

/

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

.

t

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

CONCLUSIÓN

En resumen, in contrast to the traditional relay view of the thalamus, we propose that thala-
mocortical interaction is the locus of meta-learning where the thalamus provides cortical con-
trol functions, such as sensory filtering, working memory gating, or motor preparation, eso
parametrize the cortical activity association space. Además, we propose a two-timescale
learning consolidation framework in which BG hierarchically selects these thalamic control
functions to enable meta-learning, solving the credit assignment problem. The faster plasticity
learns contextual associations to enable rapid behavioral flexibility, while the slower plasticity
establishes cortical representation that generalizes. By considering the recent observation of
the thalamus selectively amplifying functional cortical connectivity, the thalamocortical–basal
ganglia network is able to flexibly learn context-dependent associations without catastrophic
forgetting while generalizing to the new contexts. This modular account of the thalamocortical
interaction may seem to be in contrast with the recent proposed dynamical perspectives
(Barack & Krakauer, 2021) on thalamocortical interaction in which the thalamus shapes and
constrains the cortical attractor landscapes (Brillar, 2021). We would like to argue that both
the modular and the dynamical perspectives are compatible with our proposal. The crux of
the perspectives is that the thalamus provides control functions that parametrize cortical
dinámica, and these control functions can be of modular nature or of dynamical nature
depending on their specific input-output connectivity. Flexible behaviors can be induced by
selecting either the control functions that amplify the appropriate cortical subnetworks or those
that adjust the cortical dynamics to the appropriate regimes.

CONTRIBUCIONES DE AUTOR

Mien Wang: Conceptualización; Investigación; Metodología; Escritura – borrador original; Writing –
revisar & edición. Michael M. en un abrazo: Conceptualización; Adquisición de financiación; Metodología;
Supervisión; Escritura – revisión & edición.

INFORMACIÓN DE FINANCIACIÓN

Michael M. en un abrazo, National Institute of Mental Health (https://dx.doi.org/10.13039
/100000025), Award ID: 5R01MH120118-02.

REFERENCIAS

Abbott, l. F., & nelson, S. B. (2000). Synaptic plasticity: Taming the
beast. Neurociencia de la naturaleza, 3, 1178–1183. https://doi.org/10
.1038/81453, PubMed: 11127835

Alexander, GRAMO. MI., DeLong, METRO. r., & Strick, PAG. l. (1986). Parallel
organization of functionally segregated circuits linking basal
ganglia and cortex. Revisión anual de neurociencia, 9, 357–381.
https://doi.org/10.1146/annurev.ne.09.030186.002041, PubMed:
3085570

allen, W.. MI., Kauvar, I. v., Chen, METRO. Z., Richman, mi. B., Cual, S. J.,
chan, K., … Deisseroth, k. (2017). Global representations of
goal-directed behavior in distinct cell types of mouse neocortex.
Neurona, 94(4), 891–907. https://doi.org/10.1016/j.neuron.2017
.04.017, PubMed: 28521139

Andalman, A. S., & Fee, METRO. S. (2009). A basal ganglia-forebrain
circuit in the songbird biases motor output to avoid vocal errors.
procedimientos de la Academia Nacional de Ciencias, 106(30),

12518–12523. https://doi.org/10.1073/pnas.0903214106,
PubMed: 19597157

Ashby, F. GRAMO., Ennis, j. METRO., & Spiering, B. j. (2007). A neurobiological
theory of automaticity in perceptual categorization. Psychologi-
cal Review, 114(3), 632–656. https://doi.org/10.1037/0033-295X
.114.3.632, PubMed: 17638499

Asmus, F., Huber, h., Gasser, T., & Schöls, l. (2008). Kick and rush:
Paradoxical kinesia in Parkinson disease. Neurología, 71(9), 695.
https://doi.org/10.1212/01.wnl.0000324618.88710.30, PubMed:
18725599

malo, D., Kayser, A. S., & D'Esposito, METRO. (2010). Frontal cortex
and the discovery of abstract action rules. Neurona, 66(2),
315–326. https://doi.org/10.1016/j.neuron.2010.03.025,
PubMed: 20435006

Bamford, norte. S., Wightman, R. METRO., & Sulzer, D. (2018). Dopamine’s
effects on corticostriatal synapses during reward-based

Neurociencia en red

991

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

t

/

/

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

t

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

behaviors. Neurona, 97(3), 494–510. https://doi.org/10.1016/j
.neuron.2018.01.006, PubMed: 29420932

Barack, D. l., & Krakauer, j. W.. (2021). Two views on the cognitive
cerebro. Naturaleza Reseñas Neurociencia, 22(6), 359–371. https://doi
.org/10.1038/s41583-021-00448-6, PubMed: 33859408

Bayer, h. METRO., & Vislumbres, PAG. W.. (2005). Midbrain dopamine neurons
encode a quantitative reward prediction error signal. Neurona,
47(1), 129–141. https://doi.org/10.1016/j.neuron.2005.05.020,
PubMed: 15996553

Benna, METRO. K., & Fusi, S. (2016). Computational principles of synaptic
memory consolidation. Neurociencia de la naturaleza, 19(12), 1697–1706.
https://doi.org/10.1038/nn.4401, PubMed: 27694992

Bliss, t. v., & Lomo, t. (1973). Long-lasting potentiation of synaptic
transmission in the dentate area of the anaesthetized rabbit
following stimulation of the perforant path. Revista de fisiología,
232(2), 331–356. https://doi.org/10.1113/jphysiol.1973
.sp010273, PubMed: 4727084

Bolkan, S. S., Stujenske, j. METRO., Parnaudeau, S., Spellman, t. J.,
Rauffenbart, C., Abbas, A. I., … Kellendonk, C. (2017). Thalamic
projections sustain prefrontal activity during working memory
maintenance. Neurociencia de la naturaleza, 20(7), 987–996. https://doi
.org/10.1038/nn.4568, PubMed: 28481349

Botvinick, METRO., Ritter, S., Wang, j. X., Kurth-Nelson, Z., Blundell, C.,
& Hassabis, D. (2019). Aprendizaje reforzado, fast and slow.
Tendencias en Ciencias Cognitivas, 23(5), 408–422. https://doi.org/10
.1016/j.tics.2019.02.006, PubMed: 31003893

Cadieu, C. F., hong, h., Yamins, D. l. K., Pinto, NORTE., Ardila, D.,
Solomon, mi. A., … DiCarlo, j. j. (2014). Deep neural networks
rival the representation of primate IT cortex for core visual object
recognition. Biología Computacional PLoS, 10(12), 1–18. https://
doi.org/10.1371/journal.pcbi.1003963, PubMed: 25521294
Cass, W.. A., & Gerhardt, GRAMO. A. (1995). In vivo assessment of dopa-
mine uptake in rat medial prefrontal cortex: Comparison with
dorsal striatum and nucleus accumbens. Journal of Neurochem-
istry, 65(1), 201–207. https://doi.org/10.1046/j.1471-4159.1995
.65010201.X, PubMed: 7790861

Cichon, J., & Gan, W.. B. (2015). Branch-specific dendritic Ca(2+)
spikes cause persistent synaptic plasticity. Naturaleza, 520(7546),
180–185. https://doi.org/10.1038/nature14251, PubMed:
25822789

Ciliax, B. J., Heilman, C., Demchyshyn, l. l., Pristupa, z. B., Ince, MI.,
Hersch, S. METRO., … Levey, A. I. (1995). The dopamine transporter:
Immunochemical characterization and localization in brain.
Revista de neurociencia, 15(3 punto. 1), 1714–1723. https://doi.org
/10.1523/JNEUROSCI.15-03-01714.1995, PubMed: 7534339
cocinero, S. F., & Bear, METRO. F. (2010). Visual experience induces
long-term potentiation in the primary visual cortex. Diario de
Neurociencia, 30(48), 16304–16313. https://doi.org/10.1523
/JNEUROSCI.4333-10.2010, PubMed: 21123576

Cortes, C., Gonzalvo, X., Kuznetsov, v., Mohri, METRO., & Cual, S.
(2017). AdaNet: Adaptive structural learning of artificial neural
redes. In Proceedings of the 34th international conference
on machine learning (volumen. 70, páginas. 874–883). Retrieved from
https://proceedings.mlr.press/v70/cortes17a.html

Cox, J., & Witten, I. B. (2019). Striatal circuits for reward learning
and decision-making. Naturaleza Reseñas Neurociencia, 20(8),
482–494. https://doi.org/10.1038/s41583-019-0189-2, PubMed:
31171839

Crick, F. (1989). The recent excitement about neural networks.
Naturaleza, 337(6203), 129–132. https://doi.org/10.1038/337129a0,
PubMed: 2911347

Dayán, PAG., & Abbott, l. F. (2005). Theoretical neuroscience:
Computational and mathematical modeling of neural systems.
CON prensa.

Donahue, C. h., & Sotavento, D. (2015). Dynamic routing of task-
relevant signals for decision making in dorsolateral prefrontal
corteza. Neurociencia de la naturaleza, 18(2), 295–301. https://doi.org/10
.1038/nn.3918, PubMed: 25581364

Doya, k. (1999). What are the computations of the cerebellum, el
basal ganglia and the cerebral cortex? Neural Networks, 12(7–8),
961–974. https://doi.org/10.1016/S0893-6080(99)00046-5,
PubMed: 12662639

Doya, k. (2000). Complementary roles of basal ganglia and cere-
bellum in learning and motor control. Current Opinion in Neu-
robiology, 10(6), 732–739. https://doi.org/10.1016/S0959-4388
(00)00153-7, PubMed: 11240282

Draelos, t. J., Miner, norte. MI., Lamb, C. C., Cox, j. A., Vineyard, C. METRO.,
Carlson, k. D., … Aimone, j. B. (2017). Neurogenesis deep learn-
En g: Extending deep networks to accommodate new classes. En
2017 international joint conference on neural networks (IJCNN)
(páginas. 526–533). https://doi.org/10.1109/IJCNN.2017.7965898
Enel, PAG., Wallis, j. D., & Rich, mi. l. (2020). Stable and dynamic
representations of value in the prefrontal cortex. eVida, 9, e54313.
https://doi.org/10.7554/eLife.54313, PubMed: 32628108

Fee, METRO. S., & Goldberg, j. h. (2011). A hypothesis for basal ganglia–
dependent reinforcement learning in the songbird. Neurociencia,
198, 152–170. https://doi.org/10.1016/j.neuroscience.2011.09
.069, PubMed: 22015923

Feldman, D. mi. (2009). Synaptic mechanisms for plasticity in neocortex.
Revisión anual de neurociencia, 32, 33–55. https://doi.org/10.1146
/annurev.neuro.051508.135516, PubMed: 19400721

Fernando, C., Banarse, D., Blundell, C., Zwols, y., Ha, D., Rusu,
A. A., … Wierstra, D. (2017). Pathnet: Evolution channels gradi-
ent descent in super neural networks. CORR, abs/1701.08734.
Retrieved from https://arxiv.org/abs/1701.08734. https://doi.org
/10.48550/arXiv.1701.08734

Fiete, I. r., Fee, METRO. S., & Seung, h. S. (2007). Model of birdsong
learning based on gradient estimation by dynamic perturbation
of neural conductances. Revista de neurofisiología, 98(4),
2038–2057. https://doi.org/10.1152/jn.01311.2006, PubMed:
17652414

Fiete, I. r., & Seung, h. S. (2006). Gradient learning in spiking neu-
ral networks by dynamic perturbation of conductances. Físico
Review Letters, 97, 048104. https://doi.org/10.1103/PhysRevLett
.97.048104, PubMed: 16907616

Francés, R. METRO. (1999). Catastrophic forgetting in connectionist net-
obras. Tendencias en Ciencias Cognitivas, 3(4), 128–135. https://doi
.org/10.1016/S1364-6613(99)01294-2, PubMed: 10322466

Fusi, S., Dibujó, PAG. J., & Abbott, l. F. (2005). Cascade models of syn-
aptically stored memories. Neurona, 45(4), 599–611. https://doi
.org/10.1016/j.neuron.2005.02.001, PubMed: 15721245

Fuster, j. (1997). The prefrontal cortex: Anatomy, physiology, y
neuropsychology of the frontal lobe. Lippincott-Raven. Retrieved
from https://books.google.com/books?id=YupqAAAAMAAJ

gao, r., van den Brink, R. l., Pfeffer, T., & Voytek, B. (2020). nuevo-
ronal timescales are functionally dynamic and shaped by cortical

Neurociencia en red

992

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

/

/

t

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

t

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

microarchitecture. eVida, 9, e61277. https://doi.org/10.7554/eLife
.61277, PubMed: 33226336

Garris, PAG. A., & Wightman, R. METRO. (1994). Different kinetics govern
dopaminergic transmission in the amygdala, corteza prefrontal,
and striatum: An in vivo voltammetric study. Journal of Neurosci-
ence, 14(1), 442–450. https://doi.org/10.1523/ JNEUROSCI.14
-01-00442.1994, PubMed: 8283249

Gerfen, C., & Bolam, j. (2010). The neuroanatomical organization
of the basal ganglia. Handbook of Behavioral Neuroscience, 20,
3–28. https://doi.org/10.1016/B978-0-12-374767-9.00001-9
guo, w., Clause, A. r., Barth-Maron, A., & Polley, D. B. (2017). A
corticothalamic circuit for dynamic switching between feature
detection and discrimination. Neurona, 95(1), 180–194. https://
doi.org/10.1016/j.neuron.2017.05.019, PubMed: 28625486
guo, z. v., Inagaki, h. K., Daie, K., Druckmann, S., Gerfen, C. r., &
Svoboda, k. (2017). Maintenance of persistent activity in a fron-
tal thalamocortical loop. Naturaleza, 545(7653), 181–186. https://doi
.org/10.1038/nature22324, PubMed: 28467817

harris, j. A., Mihalas, S., Hirokawa, k. MI., Whitesell, j. D., Choi, h.,
Bernard, A., … Zeng, h. (2019). Hierarchical organization of cor-
tical and thalamic connectivity. Naturaleza, 575(7781), 195–202.
https://doi.org/10.1038/s41586-019-1716-z, PubMed: 31666704
Hayashi-Takagi, A., Yagishita, S., Nakamura, METRO., Shirai, F., Wu,
Y. I., Loshbaugh, A. l., … Kasai, h. (2015). Labelling and optical
erasure of synaptic memory traces in the motor cortex. Naturaleza,
525(7569), 333–338. https://doi.org/10.1038/nature15257,
PubMed: 26352471

Él, K., zhang, X., Ren, S., & Sol, j. (2016). Deep residual learning
for image recognition. En 2016 IEEE conference on computer
vision and pattern recognition (CVPR) (páginas. 770–778). https://doi
.org/10.1109/CVPR.2016.90

Hebb, D. (2002). The organization of behavior: A neuropsycholog-
ical theory. taylor & Francisco. Retrieved from https://books.google
.com/books?id=gUtwMochAI8C

Hikosaka, o., kim, h. F., Yasuda, METRO., & Yamamoto, S. (2014). Basal
ganglia circuits for reward value-guided behavior. Annual
Review of Neuroscience, 37, 289–306. https://doi.org/10.1146
/annurev-neuro-071013-013924, PubMed: 25032497

Hoffmann, k. PAG., Piedra, J., & sherman, S. METRO. (1972). Relay of
receptive-field properties in dorsal lateral geniculate nucleus of
the cat. Revista de neurofisiología, 35(4), 518–531. https://doi
.org/10.1152/jn.1972.35.4.518, PubMed: 4338566

Houk, j. C., davis, j. l., & Beiser, D. GRAMO. (1994). Adaptive critics and
the basal ganglia. In Models of information processing in the
basal ganglia (páginas. 215–232). CON prensa. https://doi.org/10.7551
/mitpress/4708.003.0018

Hubel, D. h., & Wiesel, t. norte. (1961). Integrative action in the cat’s
lateral geniculate body. Revista de fisiología, 155, 385–398.
https://doi.org/10.1113/jphysiol.1961.sp006635, PubMed:
13716436

Hubel, D. h., & Wiesel, t. norte. (1962). Receptive fields, binocular
interaction and functional architecture in the cat’s visual cortex.
Revista de fisiología, 160, 106–154. https://doi.org/10.1113
/jphysiol.1962.sp006837, PubMed: 14449617

Hunnicutt, B. J., Jongbloets, B. C., Birdsong, W.. T., Gertz, k. J.,
Zhong, h., & Mao, t. (2016). A comprehensive excitatory input
map of the striatum reveals novel functional organization. eVida, 5,
e19103. https://doi.org/10.7554/eLife.19103, PubMed: 27892854

Hélie, S., Ell, S. w., & Ashby, F. GRAMO. (2015). Learning robust
cortico-cortical associations with the basal ganglia: An integra-
tive review. Corteza, 64, 123–135. https://doi.org/10.1016/j
.cortex.2014.10.011, PubMed: 25461713

Ikemoto, S., & Panksepp, j. (1999). The role of nucleus accumbens
dopamine in motivated behavior: A unifying interpretation with
special reference to reward-seeking. Brain Research Reviews, 31(1),
6–41. https://doi.org/10.1016/S0165-0173(99)00023-5, PubMed:
10611493

Jacobs, D. S., & Moghaddam, B. (2020). Prefrontal cortex represen-
tation of learning of punishment probability during reward-
motivated actions. Revista de neurociencia, 40(26), 5063–5077.
https://doi.org/10.1523/ JNEUROSCI.0310-20.2020, PubMed:
32409619

Jiang, h., & kim, h. F. (2018). Anatomical inputs from the sensory
and value structures to the tail of the rat striatum. Fronteras en
Neuroanatomy, 12, 30. https://doi.org/10.3389/fnana.2018
.00030, PubMed: 29773980

jones, mi. GRAMO. (Ed.). (1985). The thalamus. Springer US. https://doi.org

/10.1007/978-1-4615-1749-8

Jung, h., Ju, J., Jung, METRO., & kim, j. (2018). Less-forgetful learning for
domain expansion in deep neural networks. In AAAI conference
on artificial intelligence. Retrieved from https://www.aaai.org/ocs
/index.php/AAAI/AAAI18/paper/view/17073

Kemker, r., & Kanan, C. (2018). FearNet: Brain-inspired model for
incremental learning. In International conference on learning rep-
resentaciones. Retrieved from https://openreview.net/forum?id
=SJ1Xmf-Rb

Kemker, r., McClure, METRO., Abitino, A., Hayes, T., & Kanan, C.
(2018). Measuring catastrophic forgetting in neural networks. En
AAAI conference on artificial intelligence. Retrieved from https://
aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16410

Ketz, NORTE., Morkonda, S. GRAMO., & O’Reilly, R. C. (2013). Theta coordi-
nated error-driven learning in the hippocampus. PLoS Computa-
tional Biology, 9(6), 1–9. https://doi.org/10.1371/journal.pcbi
.1003067, PubMed: 23762019

kim, C., Johnson, norte. F., Cilles, S. MI., & Gold, B. t. (2011). Common
and distinct mechanisms of cognitive flexibility in prefrontal cor-
tex. Revista de neurociencia, 31(13), 4771–4779. https://doi.org
/10.1523/JNEUROSCI.5923-10.2011, PubMed: 21451015

Kirkpatrick, J., Pascanu, r., Rabinowitz, NORTE., Venecia, J., Desjardins,
GRAMO., Rusu, A. A., … Hadsell, R. (2017). Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Acad-
emy of Sciences, 114(13), 3521–3526. https://doi.org/10.1073
/pnas.1611835114, PubMed: 28292907

kirkwood, A., Rioult, METRO. C., & Bear, METRO. F. (1996). Experience-
dependent modification of synaptic plasticity in visual cortex.
Naturaleza, 381(6582), 526–528. https://doi.org/10.1038/381526a0,
PubMed: 8632826

Kornfeld, J., Januszewski, METRO., Schubert, PAG., jainista, v., Denk, w., &
Fee, METRO. (2020). An anatomical substrate of credit assignment in
aprendizaje reforzado. bioRxiv. https://doi.org/10.1101/2020.02
.18.954354

Krizhevsky, A., Sutskever, I., & Hinton, GRAMO. mi. (2012). ImageNet classi-
fication with deep convolutional neural networks. In Advances in
sistemas de procesamiento de información neuronal (volumen. 25). Asociados Curran,
Cª. Retrieved from https://proceedings.neurips.cc/paper/2012
/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Neurociencia en red

993

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

/

/

t

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

.

t

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

Kumaran, D., Hassabis, D., & McClelland, j. l. (2016). Qué
learning systems do intelligent agents need? Complementary
learning systems theory updated. Tendencias en Ciencias Cognitivas,
20(7), 512–534. https://doi.org/10.1016/j.tics.2016.05.004,
PubMed: 27315762

Kusmierz, l., Isomura, T., & Toyoizumi, t. (2017). Learning with
three factors: modulating Hebbian plasticity with errors. Actual
Opinion in Neurobiology, 46, 170–177. https://doi.org/10.1016/j
.conb.2017.08.020, PubMed: 28918313

Lanciego, j. l., Luquin, NORTE., & Obeso, j. A. (2012). Functional neu-
roanatomy of the basal ganglia. Cold Spring Harbor Perspectives
En medicina, 2(12), a009621. https://doi.org/10.1101
/cshperspect.a009621, PubMed: 23071379

Lapish, C. C., Kroener, S., Durstewitz, D., Lavin, A., & Seamans,
j. k. (2007). The ability of the mesocortical dopamine system
to operate in distinct temporal modes. Psicofarmacología,
191(3), 609–625. https://doi.org/10.1007/s00213-006-0527-8,
PubMed: 17086392

Lewkowicz, D. j. (2014). Early experience and multisensory
perceptual narrowing. Developmental Psychobiology, 56(2),
292–315. https://doi.org/10.1002/dev.21197, PubMed:
24435505

li, Z., & Hoiem, D. (2018). Learning without forgetting. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 40(12),
2935–2947. https://doi.org/10.1109/ TPAMI.2017.2773081,
PubMed: 29990101

Lien, A. D., & Scanziani, METRO. (2018). Cortical direction selectivity
emerges at convergence of thalamic synapses. Naturaleza, 558(7708),
80–86. https://doi.org/10.1038/s41586-018-0148-5, PubMed:
29795349

Lillicrap, t. PAG., Cownden, D., Tweed, D. B., & Akerman, C. j.
(2016). Random synaptic feedback weights support error back-
propagation for deep learning. Comunicaciones de la naturaleza, 7,
13276. https://doi.org/10.1038/ncomms13276, PubMed:
27824044

Lillicrap, t. PAG., Santoro, A., Marris, l., Akerman, C. J., & Hinton, GRAMO.
(2020). Backpropagation and the brain. Nature Reviews Neuro-
ciencia, 21(6), 335–346. https://doi.org/10.1038/s41583-020
-0277-3, PubMed: 32303713

Liu, Y. h., Herrero, S., Mihalas, S., Shea-Brown, MI., & Sümbül, Ud..
(2020). A solution to temporal credit assignment using
cell-type-specific modulatory signals. bioRxiv. https://doi.org/10
.1101/2020.11.22.393504

Makino, h., Hwang, mi. J., Hedrick, norte. GRAMO., & Komiyama, t. (2016).
Circuit mechanisms of sensorimotor learning. Neurona, 92(4),
705–721. https://doi.org/10.1016/j.neuron.2016.10.029,
PubMed: 27883902

Maltoni, D., & Lomonaco, V. (2019). Continuous learning in
single-incremental-task scenarios. Neural Networks, 116,
56–73. https://doi.org/10.1016/j.neunet.2019.03.010, PubMed:
31005851

Mantener, v., Susillo, D., shenoy, k. v., & nuevosome, W.. t. (2013).
Context-dependent computation by recurrent dynamics in pre-
frontal cortex. Naturaleza, 503(7474), 78–84. https://doi.org/10
.1038/naturaleza12742, PubMed: 24201281

Marton, t. F., Seifikar, h., Luongo, F. J., Sotavento, A. T., & Sohal, V. S.
(2018). Roles of prefrontal cortex and mediodorsal thalamus
in task engagement and behavioral flexibility. Diario de

Neurociencia, 38(10), 2569–2578. https://doi.org/10.1523
/JNEUROSCI.1728-17.2018, PubMed: 29437889

McClelland, j. l., McNaughton, B. l., & O’Reilly, R. C. (1995).
Why there are complementary learning systems in the hippo-
campus and neocortex: Insights from the successes and failures
of connectionist models of learning and memory. Psicológico
Revisar, 102(3), 419–457. https://doi.org/10.1037/0033-295X
.102.3.419, PubMed: 7624455

McCloskey, METRO., & cohen, norte. j. (1989). Catastrophic interference
in connectionist networks: The sequential learning problem.
In G. h. Bower (Ed.), Psychology of learning and motivation
(volumen. 24, páginas. 109–165). Prensa académica. https://doi.org/10.1016
/S0079-7421(08)60536-8

McNab, F., & Klingberg, t. (2008). Prefrontal cortex and basal
ganglia control access to working memory. Neurociencia de la naturaleza,
11(1), 103–107. https://doi.org/10.1038/nn2024, PubMed:
18066057

Mehaffey, W.. h., & Doupe, A. j. (2015). Naturalistic stimulation
drives opposing heterosynaptic plasticity at two inputs to song-
bird cortex. Neurociencia de la naturaleza, 18(9), 1272–1280. https://doi
.org/10.1038/nn.4078, PubMed: 26237364

Molinero, mi. k. (2000). The prefontral cortex and cognitive control.
Naturaleza Reseñas Neurociencia, 1(1), 59–65. https://doi.org/10
.1038/35036228, PubMed: 11252769

Molinero, mi. K., & cohen, j. D. (2001). An integrative theory of pre-
frontal cortex function. Revisión anual de neurociencia, 24,
167–202. https://doi.org/10.1146/annurev.neuro.24.1.167,
PubMed: 11283309

Minsky, METRO. (1961). Steps toward artificial intelligence. Actas
of the IRE, 49(1), 8–30. https://doi.org/10.1109/ JRPROC.1961
.287775

Mnih, v., Kavukcuoglu, K., Silver, D., Rusu, A. A., Venecia, J.,
Bellamare, METRO. GRAMO., … Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Naturaleza, 518(7540),
529–533. https://doi.org/10.1038/nature14236, PubMed:
25719670

Monchi, o., Petrides, METRO., Strafella, A. PAG., Worsley, k. J., & Doyon, j.
(2006). Functional role of the basal ganglia in the planning and
execution of actions. Annals of Neurology, 59(2), 257–264.
https://doi.org/10.1002/ana.20742, PubMed: 16437582

montesco, PAG. r., Dayán, PAG., & Sejnowski, t. j. (1996). A framework
for mesencephalic dopamine systems based on predictive
Hebbian learning. Revista de neurociencia, 16(5), 1936–1947.
https://doi.org/10.1523/ JNEUROSCI.16-05-01936.1996,
PubMed: 8774460

morris, GRAMO., Nevet, A., Arkadir, D., Vaadia, MI., & Bergman, h.
(2006). Midbrain dopamine neurons encode decisions for future
acción. Neurociencia de la naturaleza, 9(8), 1057–1063. https://doi.org/10
.1038/nn1743, PubMed: 16862149

Mukherjee, A., Bajwa, NORTE., Justicia, norte. h., Porrero, C., Clasca, F., &
en un abrazo, METRO. METRO. (2020). Variation of connectivity across exemplar
sensory and associative thalamocortical loops in the mouse.
eVida, 9, e62554. https://doi.org/10.7554/eLife.62554, PubMed:
33103997

Mukherjee, A., Justicia, norte. h., Wimmer, R. D., & en un abrazo, METRO. METRO.
(2021). Thalamic circuits for independent control of prefrontal
signal and noise. Naturaleza, 600(7887), 100–104. https://doi.org
/10.1038/s41586-021-04056-3, PubMed: 34614503

Neurociencia en red

994

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

t

/

/

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

t

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

Murray, j. D., Bernacchia, A., Freedman, D. J., Romo, r., Wallis,
j. D., Cai, X., … Wang, X. j. (2014). A hierarchy of intrinsic
timescales across primate cortex. Neurociencia de la naturaleza, 17(12),
1661–1663. https://doi.org/10.1038/nn.3862, PubMed:
25383900

Murray, METRO. METRO., Lewkowicz, D. J., Amedi, A., & Wallace, METRO. t.
(2016). Multisensory processes: A balancing act across the
lifespan. Trends in Neurosciences, 39(8), 567–579. https://doi
.org/10.1016/j.tins.2016.05.003, PubMed: 27282408

Nakajima, METRO., Schmitt, l. I., & en un abrazo, METRO. METRO. (2019). prefrontal
La corteza regula el filtrado sensorial a través de los ganglios basales.-
vía del tálamo. Neurona, 103(3), 445–458. https://doi.org/10
.1016/j.neuron.2019.05.026, PubMed: 31202541

Nambu, A. (2011). Somatotopic organization of the primate basal
ganglia. Frontiers in Neuroanatomy, 5, 26. https://doi.org/10
.3389/fnana.2011.00026, PubMed: 21541304

NVI, Y. (2009). Reinforcement learning in the brain. Diario de
Mathematical Psychology, 53(3), 139–154. https://doi.org/10
.1016/j.jmp.2008.12.005

O’Reilly, R. C. (1996). Biologically plausible error-driven learning
using local activation differences: The generalized recirculation
algoritmo. Computación neuronal, 8(5), 895–938. https://doi.org/10
.1162/neco.1996.8.5.895

O’Reilly, R. C., Russin, j. l., Zolfaghar, METRO., & Rohrlich, j. (2021).
Deep predictive learning in neocortex and pulvinar. Diario de
Neurociencia Cognitiva, 33(6), 1158–1196. https://doi.org/10
.1162/jocn_a_01708, PubMed: 34428793

Parisi, GRAMO. I., Kemker, r., Parte, j. l., Kanan, C., & Wermter, S. (2019).
Continual lifelong learning with neural networks: A review.
Neural Networks, 113, 54–71. https://doi.org/10.1016/j.neunet
.2019.01.012, PubMed: 30780045

Perrin, MI., & Venance, l. (2019). Bridging the gap between striatal
plasticity and learning. Opinión actual en neurobiología, 54,
104–112. https://doi.org/10.1016/j.conb.2018.09.007, PubMed:
30321866

Peters, A. J., Fabre, j. METRO. J., Steinmetz, norte. A., harris, k. D., &
Carandini, METRO. (2021). Striatal activity topographically reflects
cortical activity. Naturaleza, 591, 420–425. https://doi.org/10.1038
/s41586-020-03166-8, PubMed: 33473213

Petersen, C. C. h. (2019). Sensorimotor processing in the rodent
barrel cortex. Naturaleza Reseñas Neurociencia, 20(9), 533–546.
https://doi.org/10.1038/s41583-019-0200-y, PubMed: 31367018
Phillips, j. METRO., Kambi, norte. A., & Saalmann, Y. B. (2016). A subcorti-
cal pathway for rapid, goal-driven, attentional filtering. Tendencias en
Neurosciences, 39(2), 49–51. https://doi.org/10.1016/j.tins.2015
.12.003, PubMed: 26743499

Fuerza, j. D., & Schlaggar, B. l. (2017). Neural plasticity across the
lifespan. Wiley Interdisciplinary Reviews: Developmental Biology,
6(1), e216. https://doi.org/10.1002/wdev.216, PubMed: 27911497
Rakic, PAG. (2009). Evolution of the neocortex: A perspective from
developmental biology. Naturaleza Reseñas Neurociencia, 10(10),
724–735. https://doi.org/10.1038/nrn2719, PubMed: 19763105
Reinagel, PAG., Godwin, D., sherman, S. METRO., & Koch, C. (1999).
Encoding of visual information by LGN bursts. Journal of Neuro-
physiology, 81(5), 2558–2569. https://doi.org/10.1152/jn.1999
.81.5.2558, PubMed: 10322089

Richards, B. A., & Lillicrap, t. PAG. (2019). Dendritic solutions to the
credit assignment problem. Opinión actual en neurobiología,

54, 28–36. https://doi.org/10.1016/j.conb.2018.08.003,
PubMed: 30205266

Rikhye, R. v., Gilra, A., & en un abrazo, METRO. METRO. (2018). Thalamic
regulation of switching between cortical representations enables
flexibilidad cognitiva. Neurociencia de la naturaleza, 21(12), 1753–1763.
https://doi.org/10.1038/s41593-018-0269-z, PubMed:
30455456

Roelfsema, PAG. r., & Holtmaat, A. (2018). Control of synaptic plas-
ticity in deep cortical networks. Naturaleza Reseñas Neurociencia,
19(3), 166–180. https://doi.org/10.1038/nrn.2018.6, PubMed:
29449713

Roelfsema, PAG. r., & van Ooyen, A. (2005). Attention-gated rein-
forcement learning of internal representations for classification.
Computación neuronal, 17(10), 2176–2214. https://doi.org/10
.1162/0899766054615699, PubMed: 16105222

Roesch, METRO. r., Calu, D. J., & Schoenbaum, GRAMO. (2007). dopamina
neurons encode the better option in rats deciding between
differently delayed or sized rewards. Neurociencia de la naturaleza,
10(12), 1615–1624. https://doi.org/10.1038/nn2013, PubMed:
18026098

Rumelhart, D. MI., Hinton, GRAMO. MI., & williams, R. j. (1986). Aprendiendo
representations by back-propagating errors. Naturaleza, 323(6088),
533–536. https://doi.org/10.1038/323533a0

Rusu, A. A., Rabinowitz, norte. C., Desjardins, GRAMO., Soyer, h., Kirkpatrick,
J., Kavukcuoglu, K., … Hadsell, R. (2016). Progressive neural
redes. CORR, abs/1606.04671. Retrieved from https://arxiv
.org/abs/1606.04671. https://doi.org/10.48550/arXiv.1606.04671
Saalmann, Y. B., & Kastner, S. (2015). The cognitive thalamus. Fron-
tiers in Systems Neuroscience, 9, 39. https://doi.org/10.3389
/fnsys.2015.00039, PubMed: 25852498

Sacramento, J., Ponte Costa, r., bengio, y., & Senn, W.. (2018).
Dendritic cortical microcircuits approximate the backpropaga-
tion algorithm. In Advances in neural information processing sys-
tems (volumen. 31, páginas. 8735–8746). Asociados Curran, Cª. Retrieved
f r o m h t t p s : / / p r o c e e d i n g s . n e u r i p s . c c / p a p e r / 2 0 1 8 / f i l e
/1dc3a89d0d440ba31729b0ba74b93a33-Paper.pdf

Scharff, C., & Nottebohm, F. (1991). A comparative study of the
behavioral deficits following lesions of various parts of the zebra
finch song system: Implications for vocal learning. Diario de
Neurociencia, 11(9), 2896–2913. https://doi.org/10.1523
/JNEUROSCI.11-09-02896.1991, PubMed: 1880555

Schiess, METRO., Urbanczik, r., & Senn, W.. (2016). Somato-dendritic
synaptic plasticity and error-backpropagation in active dendrites.
Biología Computacional PLoS, 12(2), 1–18. https://doi.org/10
.1371/journal.pcbi.1004638, PubMed: 26841235

Schmitt, l. I., Wimmer, R. D., Nakajima, METRO., Happ, METRO., Mofakham,
S., & en un abrazo, METRO. METRO. (2017). Thalamic amplification of cortical
connectivity sustains attentional control. Naturaleza, 545(7653),
219–223. https://doi.org/10.1038/nature22073, PubMed:
28467827

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, l.,
Schmitt, S., … Silver, D. (2020). Mastering Atari, Go, chess and
shogi by planning with a learned model. Naturaleza, 588(7839),
604–609. https://doi.org/10.1038/s41586-020-03051-4,
PubMed: 33361790

Schultz, w., Dayán, PAG., & montesco, PAG. R. (1997). A neural substrate
of prediction and reward. Ciencia, 275(5306), 1593–1599. https://
doi.org/10.1126/science.275.5306.1593, PubMed: 9054347

Neurociencia en red

995

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

/

t

/

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

.

t

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

Seamans, j. K., & robbins, t. W.. (2010). Dopamine modulation of
the prefrontal cortex and cognitive function. In The dopamine
receptors (páginas. 373–398). Totowa, Nueva Jersey: Humana Press. https://doi
.org/10.1007/978-1-60327-333-6_14

SEO, METRO., Sotavento, MI., & Averbeck, B. B. (2012). Action selection and
action value in frontal-striatal circuits. Neurona, 74(5), 947–960.
https://doi.org/10.1016/j.neuron.2012.03.037, PubMed:
22681697

sherman, S. METRO., & Guillery, R. W.. (2005). Exploring the thalamus

and its role in cortical function (2y ed.). CON prensa.

sherman, S. METRO., & Spear, PAG. D. (1982). Organization of visual path-
ways in normal and visually deprived cats. Physiological
Reseñas, 62(2), 738–855. https://doi.org/10.1152/physrev.1982
.62.2.738, PubMed: 6280221

espinilla, h., Sotavento, j. K., kim, J., & kim, j. (2017). Continual learning with
deep generative replay. In Advances in neural information
processing systems (volumen. 30). Asociados Curran, Cª. Retrieved
f r o m h t t p s : / / p r o c e e d i n g s . n e u r i p s . c c / p a p e r / 2 0 1 7 / f i l e
/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf

Brillar, j. METRO. (2021). The thalamus integrates the macrosystems of
the brain to facilitate complex, adaptive brain network dynamics.
Progress in Neurobiology, 199, 101951. https://doi.org/10.1016/j
.pneurobio.2020.101951, PubMed: 33189781

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, l., van den
Driessche, GRAMO., … Hassabis, D. (2016). Mastering the game of Go
with deep neural networks and tree search. Naturaleza, 529(7587),
484–489. https://doi.org/10.1038/nature16961, PubMed:
26819042

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., … Hassabis, D. (2017). Mastering the game of Go
without human knowledge. Naturaleza, 550(7676), 354–359. https://
doi.org/10.1038/nature24270, PubMed: 29052630

Cantante, w., Sejnowski, T., & Rakic, PAG. (2019). The neocortex. CON
Prensa. Retrieved from https:// books.google.com/ books?id
=aL60DwAAQBAJ. https://doi.org/10.7551/mitpress/12593.001
.0001

Sohn, h., Meirhaeghe, NORTE., Rajalingham, r., & Jazayeri, METRO. (2021).
A network perspective on sensorimotor learning. Trends in Neu-
rosciences, 44(3), 170–181. https://doi.org/10.1016/j.tins.2020
.11.007, PubMed: 33349476

Sohrabji, F., Nordeen, mi. J., & Nordeen, k. W.. (1990). Selective
impairment of song learning following lesions of a forebrain
nucleus in the juvenile zebra finch. Behavioral and Neural Biology,
53(1), 51–63. https://doi.org/10.1016/0163-1047(90)90797-A,
PubMed: 2302141

Soliveri, PAG., Marrón, R. GRAMO., Jahanshahi, METRO., Caraceni, T., & Marsden,
C. D. (1997). Learning manual pursuit tracking skills in patients
with Parkinson’s disease. Cerebro, 120(punto. 8), 1325–1337. https://
doi.org/10.1093/brain/120.8.1325, PubMed: 9278626

Suri, R. MI., & Schultz, W.. (1999). A neural network model with
dopamine-like reinforcement signal that learns a spatial delayed
response task. Neurociencia, 91(3), 871–890. https://doi.org/10
.1016/S0306-4522(98)00697-6, PubMed: 10391468

suton, r., & Aprender, A. (2018). Aprendizaje reforzado: An introduc-
ción. CON prensa. Retrieved from https://books.google.com/books
?id=sWV0DwAAQBAJ

suton, R. S., & Aprender, A. GRAMO. (1990). Time-derivative models of
Pavlovian reinforcement. In Learning and computational

neurociencia: Foundations of adaptive networks (páginas. 497–537).
CON prensa.

Tanaka, METRO. (2007). Cognitive signals in the primate motor thala-
mus predict saccade timing. Revista de neurociencia, 27(44),
12109–12118. https://doi.org/10.1523/ JNEUROSCI.1873-07
.2007, PubMed: 17978052

Tesileanu, T., Olveczky, B., & Balasubramanian, V. (2017). Rules
and mechanisms for efficient two-stage learning in neural
circuitos. eVida, 6, e20944. https://doi.org/10.7554/eLife.20944,
PubMed: 28374674

Thomas-Ollivier, v., Reymann, j. METRO., Le Moal, S., Schück, S.,
Lieury, A., & Allain, h. (1999). Procedural memory in recent-
onset Parkinson’s disease. Dementia and Geriatric Cognitive
Disorders, 10(2), 172–180. https://doi.org/10.1159/000017100,
PubMed: 10026393

Thorndike, mi. (2017). Animal intelligence: Experimental studies.
taylor & Francisco. Retrieved from https:// books.google.com
/ b o o k s ? i d = 1 _ h A D w A A Q B A J . h t t p s : / / d o i . o r g / 1 0 . 4 3 2 4
/9781351321044

Tsutsui, K., Hosokawa, T., Yamada, METRO., & Iijima, t. (2016). Repre-
sentation of functional category in the monkey prefrontal cortex
and its rule-dependent use for behavioral selection. Diario de
Neurociencia, 36(10), 3038–3048. https://doi.org/10.1523
/JNEUROSCI.2063-15.2016, PubMed: 26961957

Usrey, W.. METRO., alonso, j. METRO., & Reid, R. C. (2000). Synaptic interac-
tions between thalamic inputs to simple cells in cat visual cortex.
Revista de neurociencia, 20(14), 5461–5467. https://doi.org/10
.1523/JNEUROSCI.20-14-05461.2000, PubMed: 10884329
Voytek, B., & Caballero, R. t. (2010). Prefrontal cortex and basal gan-
glia contributions to visual working memory. Actas de la
Academia Nacional de Ciencias, 107(42), 18167–18172. https://
doi.org/10.1073/pnas.1007277107, PubMed: 20921401

Wang, j. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer,
h., Leibo, j. Z., … Botvinick, METRO. (2018). Prefrontal cortex as a
meta-reinforcement learning system. Neurociencia de la naturaleza,
21(6), 860–868. https://doi.org/10.1038/s41593-018-0147-8,
PubMed: 29760527

Warren, t. l., Tumer, mi. C., Charlesworth, j. D., & Brainard, METRO. S.
(2011). Mechanisms and time course of vocal learning and
consolidation in the adult songbird. Revista de neurofisiología,
106(4), 1806–1821. https://doi.org/10.1152/jn.00311.2011,
PubMed: 21734110

Whittington, j. C. r., & Hombre rico, R. (2019). Theories of error
back-propagation in the brain. Tendencias en Ciencias Cognitivas,
23(3), 235–250. https://doi.org/10.1016/j.tics.2018.12.005,
PubMed: 30704969

Wickens, j. r., & Kotter, R. (1994). Cellular models of reinforce-
mento. In Models of information processing in the basal ganglia.
CON prensa. https://doi.org/10.7551/mitpress/4708.003.0017

Wimmer, R. D., Schmitt, l. I., Davidson, t. J., Nakajima, METRO.,
Deisseroth, K., & en un abrazo, METRO. METRO. (2015). Thalamic control of
sensory selection in divided attention. Naturaleza, 526(7575),
705–709. https://doi.org/10.1038/nature15398, PubMed:
26503050

Wolff, METRO., & Vann, S. D. (2019). The cognitive thalamus as a gate-
way to mental representations. Revista de neurociencia, 39(1),
3–14. https://doi.org/10.1523/ JNEUROSCI.0479-18.2018,
PubMed: 30389839

Neurociencia en red

996

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

t

/

/

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

t

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Thalamocortical contribution to flexible learning in neural systems

xiao, T., zhang, J., Cual, K., Peng, y., & zhang, z. (2014). Error-
driven incremental learning in deep convolutional neural net-
work for large-scale image classification. In ACM multimedia.
https://doi.org/10.1145/2647868.2654926

Yamins, D. l., hong, h., Cadieu, C. F., Solomon, mi. A., Seibert, D.,
& DiCarlo, j. j. (2014). Performance-optimized hierarchical
models predict neural responses in higher visual cortex. Proceed-
ings of the National Academy of Sciences, 111(23), 8619–8624.
https://doi.org/10.1073/pnas.1403112111, PubMed: 24812127
Cual, GRAMO., Cacerola, F., & Gan, W.. B. (2009). Stably maintained dendritic
spines are associated with lifelong memories. Naturaleza, 462(7275),
920–924. https://doi.org/10.1038/nature08577, PubMed: 19946265
Zenke, F., & Ganguli, S. (2018). SuperSpike: Supervised learning in
multilayer spiking neural networks. Computación neuronal, 30(6),

1514–1541. https://doi.org/10.1162/neco_a_01086, PubMed:
29652587

Zenke, F., Gerstner, w., & Ganguli, S. (2017). The temporal para-
dox of Hebbian learning and homeostatic plasticity. Actual
Opinion in Neurobiology, 43, 166–176. https://doi.org/10.1016
/j.conb.2017.03.015, PubMed: 28431369

Zenke, F., piscina, B., & Ganguli, S. (2017). Continual learning
through synaptic intelligence. In Proceedings of the 34th interna-
tional conference on machine learning (volumen. 70, páginas. 3987–3995).
Retrieved from https://proceedings.mlr.press/v70/zenke17a.html
zhou, h., Schäfer, R. J., & Desimone, R. (2016). Pulvinar-cortex
interactions in vision and attention. Neurona, 89(1), 209–220.
https://doi.org/10.1016/j.neuron.2015.11.034, PubMed:
26748092

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

/

t

/

mi
d
tu
norte
mi
norte
a
r
t
i
C
mi

pag
d

yo

F
/

/

/

/

/

6
4
9
8
0
2
0
5
6
2
6
0
norte
mi
norte
_
a
_
0
0
2
3
5
pag
d

.

t

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Neurociencia en red

997FUNCIÓN DE ENFOQUE: imagen
FUNCIÓN DE ENFOQUE: imagen
FUNCIÓN DE ENFOQUE: imagen
FUNCIÓN DE ENFOQUE: imagen
FUNCIÓN DE ENFOQUE: imagen
FUNCIÓN DE ENFOQUE: imagen

Descargar PDF