Recognizing Contextual Polarity:
An Exploration of Features for Phrase-Level
Sentiment Analysis
Theresa Wilson∗
University of Edinburgh
Janyce Wiebe∗∗
University of Pittsburgh
Paul Hoffmann∗∗
University of Pittsburgh
Many approaches to automatic sentiment analysis begin with a large lexicon of words marked
with their prior polarity (also called semantic orientation). However, the contextual polarity of
the phrase in which a particular instance of a word appears may be quite different from the
word’s prior polarity. Positive words are used in phrases expressing negative sentiments, or
vice versa. Also, quite often words that are positive or negative out of context are neutral in
context, meaning they are not even being used to express a sentiment. The goal of this work is to
automatically distinguish between prior and contextual polarity, with a focus on understanding
which features are important for this task. Because an important aspect of the problem is
identifying when polar terms are being used in neutral contexts, features for distinguishing
between neutral and polar instances are evaluated, as well as features for distinguishing between
positive and negative contextual polarity. The evaluation includes assessing the performance
of features across multiple machine learning algorithms. For all learning algorithms except
one, the combination of all features together gives the best performance. Another facet of the
evaluation considers how the presence of neutral instances affects the performance of features for
distinguishing between positive and negative polarity. These experiments show that the presence
of neutral instances greatly degrades the performance of these features, and that perhaps the
best way to improve performance across all polarity classes is to improve the system’s ability to
identify when an instance is neutral.
1. Introduction
Sentiment analysis is a type of subjectivity analysis (Wiebe 1994) that focuses on iden-
tifying positive and negative opinions, emotions, and evaluations expressed in natural
language. It has been a central component in applications ranging from recognizing
∗ School of Informatics, Edinburgh EH8 9LW, U.K. E-mail: twilson@inf.ed.ac.uk.
∗∗ Department of Computer Science, Pittsburgh, PA 15260, USA. E-mail: {wiebe,hoffmanp}@cs.pitt.edu.
Submission received: 14 November 2006; revised submission received: 8 March 2008; accepted for publication:
16 April 2008.
© 2009 Association for Computational Linguistics
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
inflammatory messages (Spertus 1997), to tracking sentiments over time in online
discussions (Tong 2001), to classifying positive and negative reviews (Pang, Lee, and
Vaithyanathan 2002; Turney 2002). Although a great deal of work in sentiment analy-
sis has targeted documents, applications such as opinion question answering (Yu and
Hatzivassiloglou 2003; Maybury 2004; Stoyanov, Cardie, and Wiebe 2005) and re-
view mining to extract opinions about companies and products (Morinaga et al. 2002;
Nasukawa and Yi 2003) require sentence-level or even phrase-level analysis. For exam-
ple, if a question answering system is to successfully answer questions about people’s
opinions, it must be able not only to pinpoint expressions of positive and negative
sentiments, such as we find in sentence (1), but also to determine when an opinion is not
being expressed by a word or phrase that typically does evoke one, such as condemned
in sentence (2).
(1) African observers generally approved (positive) of his victory while
Western governments denounced (negative) it.
(2) Gavin Elementary School was condemned in April 2004.
A common approach to sentiment analysis is to use a lexicon with information
about which words and phrases are positive and which are negative. This lexicon may
be manually compiled, as is the case with the General Inquirer (Stone et al. 1966), a
resource often used in sentiment analysis. Alternatively, the information in the lexicon
may be acquired automatically. Acquiring the polarity of words and phrases is itself
an active line of research in the sentiment analysis community, pioneered by the
work of Hatzivassiloglou and McKeown (1997) on predicting the polarity or semantic
orientation of adjectives. Various techniques have been proposed for learning the
polarity of words. They include corpus-based techniques, such as using constraints
on the co-occurrence in conjunctions of words with similar or opposite polarity
(Hatzivassiloglou and McKeown 1997) and statistical measures of word association
(Turney and Littman 2003), as well as techniques that exploit information about lexical
relationships (Kamps and Marx 2002; Kim and Hovy 2004) and glosses (Esuli and
Sebastiani 2005; Andreevskaia and Bergler 2006) in resources such as WordNet.
Acquiring the polarity of words and phrases is undeniably important, and there
are still open research challenges, such as addressing the sentiments of different senses
of words (Esuli and Sebastiani 2006b; Wiebe and Mihalcea 2006), and so on. However,
what the polarity of a given word or phrase is when it is used in a particular context is
another problem entirely. Consider, for example, the underlined positive and negative
words in the following sentence.
(3) Philip Clapp, president of the National Environment Trust, sums up well
the general thrust of the reaction of environmental movements: “There is
no reason at all to believe that the polluters are suddenly going to become
reasonable.”
The first underlined word is Trust. Although many senses of the word trust express a
positive sentiment, in this case, the word is not being used to express a sentiment at
all. It is simply part of an expression referring to an organization that has taken on
the charge of caring for the environment. The adjective well is considered positive, and
indeed it is positive in this context. However, the same is not true for the words reason
400
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
and reasonable. Out of context, we would consider both of these words to be positive.1
In context, the word reason is being negated, changing its polarity from positive to
negative. The phrase no reason at all to believe changes the polarity of the proposition that
follows; because reasonable falls within this proposition, its polarity becomes negative.
The word polluters has a negative connotation, but here in the context of the discussion
of the article and its position in the sentence, polluters is being used less to express a
sentiment and more to objectively refer to companies that pollute. To clarify how the
polarity of polluters is affected by its subject role, consider the purely negative sentiment
that emerges when it is used as an object: They are polluters.
We call the polarity that would be listed for a word in a lexicon the word’s prior
polarity, and we call the polarity of the expression in which a word appears, con-
sidering the context of the sentence and document, the word’s contextual polarity.
Although words often do have the same prior and contextual polarity, many times
a word’s prior and contextual polarities differ. Words with a positive prior polarity
may have a negative contextual polarity, or vice versa. Quite often words that are
positive or negative out of context are neutral in context, meaning that they are not
even being used to express a sentiment. Similarly, words that are neutral out of context,
neither positive or negative, may combine to create a positive or negative expression in
context.
The focus of this work is on the recognition of contextual polarity—in particular,
disambiguating the contextual polarity of words with positive or negative prior polar-
ity. We begin by presenting an annotation scheme for marking sentiment expressions
and their contextual polarity in the Multi-perspective Question Answering (MPQA)
opinion corpus. We show that, given a set of subjective expressions (identified from
the existing annotations in the MPQA corpus), contextual polarity can be annotated
reliably.
Using the contextual polarity annotations, we conduct experiments in automatically
distinguishing between prior and contextual polarity. Beginning with a large lexicon of
clues tagged with prior polarity, we identify the contextual polarity of the instances
of those clues in the corpus. The process that we use has two steps, first classifying
each clue as being in a neutral or polar phrase, and then disambiguating the contextual
polarity of the clues marked as polar. For each step in the process, we experiment with a
variety of features and evaluate the performance of the features using several different
machine learning algorithms.
Our experiments reveal a number of interesting findings. First, being able to accu-
rately identify neutral contextual polarity—when a positive or negative clue is not being
used to express a sentiment—is an important aspect of the problem. The importance of
neutral examples has previously been noted for classifying the sentiment of documents
(Koppel and Schler 2006), but ours is the first work to explore how neutral instances
affect classifying the contextual polarity of words and phrases. In particular, we found
that the performance of features for distinguishing between positive and negative po-
larity greatly degrades when neutral instances are included in the experiments.
We also found that achieving the best performance for recognizing contextual po-
larity requires a wide variety of features. This is particularly true for distinguishing
1 It is open to question whether reason should be listed as positive in a sentiment lexicon, because the more
frequent senses of reason involve intention, not sentiment. However, any existing sentiment lexicon one
would start with will have some noise and errors. The task in this article is to disambiguate instances of
the entries in a given sentiment lexicon.
401
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
between neutral and polar instances. Although some features help to increase polar or
neutral recall or precision, it is only the combination of features together that achieves
significant improvements in accuracy over the baselines. Our experiments show that for
distinguishing between positive and negative instances, features capturing negation are
clearly the most important. However, there is more to the story than simple negation.
Features that capture relationships between instances of clues also perform well, indi-
cating that identifying features that represent more complex interdependencies between
sentiment clues may be an important avenue for future research.
The remainder of this article is organized as follows. Section 2 gives an overview
of some of the things that can influence contextual polarity. In Section 3, we describe
our corpus and present our annotation scheme and inter-annotator agreement study
for marking contextual polarity. Sections 4 and 5 describe the lexicon used in our
experiments and how the contextual polarity annotations are used to determine the
gold-standard tags for instances from the lexicon. In Section 6, we consider what kind of
performance can be expected from a simple, prior-polarity classifier. Section 7 describes
the features that we use for recognizing contextual polarity, and our experiments
and results are presented in Section 8. In Section 9 we discuss related work, and we
conclude in Section 10.
2. Polarity Influencers
Phrase-level sentiment analysis is not a simple problem. Many things besides negation
can influence contextual polarity, and even negation is not always straightforward.
Negation may be local (e.g., not good), or involve longer-distance dependencies such as
the negation of the proposition (e.g., does not look very good) or the negation of the subject
(e.g., no one thinks that it’s good). In addition, certain phrases that contain negation words
intensify rather than change polarity (e.g., not only good but amazing). Contextual polarity
may also be influenced by modality: whether the proposition is asserted to be real (realis)
or not real (irrealis) (no reason at all to believe is irrealis, for example); word sense (e.g.,
Environmental Trust vs. He has won the people’s trust); the syntactic role of a word in the
sentence: whether the word is the subject or object of a copular verb (consider polluters
are versus they are polluters); and diminishers such as little (e.g., little truth, little threat).
Polanyi and Zaenen (2004) give a detailed discussion of many of these types of polarity
influencers. Many of these contextual polarity influencers are represented as features in
our experiments.
Contextual polarity may also be influenced by the domain or topic. For example,
the word cool is positive if used to describe a car, but it is negative if it is used to
describe someone’s demeanor. Similarly, a word such as fever is unlikely to be expressing
a sentiment when used in a medical context. We use one feature in our experiments to
represent the topic of the document.
Another important aspect of contextual polarity is the perspective of the person
who is expressing the sentiment. For example, consider the phrase failed to defeat
in the sentence Israel failed to defeat Hezbollah. From the perspective of Israel, failed
to defeat is negative. From the perspective of Hezbollah, failed to defeat is positive.
Therefore, the contextual polarity of this phrase ultimately depends on the perspec-
tive of who is expressing the sentiment. Although automatically detecting this kind
of pragmatic influence on polarity is beyond the scope of this work, this as well as
the other types of polarity influencers all are considered when annotating contextual
polarity.
402
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
3. Data and Annotations
For the experiments in this work, we need a corpus that is annotated comprehensively
for sentiment expressions and their contextual polarity. Rather than building a corpus
from scratch, we chose to add contextual polarity annotations to the existing annota-
tions in the Multi-perspective Question Answering (MPQA) opinion corpus2 (Wiebe,
Wilson, and Cardie 2005).
The MPQA corpus is a collection of English-language versions of news documents
from the world press. The documents contain detailed, expression-level annotations
of attributions and private states (Quirk et al. 1985). Private states are mental and
emotional states; they include beliefs, speculations, intentions, and sentiments, among
others. Although sentiments are not distinguished from other types of private states
in the existing annotations, they are a subset of what already is annotated. This makes
the annotations in the MPQA corpus a good starting point for annotating sentiment
expressions and their contextual polarity.
3.1 Annotation Scheme
When developing our annotation scheme for sentiment expressions and contextual
polarity, there were three main questions to address. First, which of the existing annota-
tions in the MPQA corpus have the possibility of being sentiment expressions? Second,
which of the possible sentiment expressions actually are expressing sentiments? Third,
what coding scheme should be used for marking contextual polarity?
The MPQA annotation scheme has four types of annotations: objective speech event
frames, two types of private state frames, and agent frames that are used for marking
speakers of speech events and experiencers of private states. A full description of
the MPQA annotation scheme and an agreement study evaluating key aspects of the
scheme are found in Wiebe, Wilson, and Cardie (2005).
The two types of private state frames, direct subjective frames and expressive sub-
jective element frames, are where we will find sentiment expressions. Direct subjective
frames are used to mark direct references to private states as well as speech events in
which private states are being expressed. For example, in the following sentences, fears,
praised, and said are all marked as direct subjective annotations.
(4) The U.S. fears a spill-over of the anti-terrorist campaign.
(5) Italian senator Renzo Gubert praised the Chinese government’s efforts.
(6) “The report is full of absurdities,” he said.
The word fears directly refers to a private state; praised refers to a speech event
in which a private state is being expressed; and said is marked as direct subjective
because a private state is being expressed within the speech event referred to by
said. Expressive subjective elements indirectly express private states through the way
something is described or through a particular wording. In example (6), the phrase
full of absurdities is an expressive subjective element. Subjectivity (Banfield 1982; Wiebe
2 Available at http://nrrc.mitre.org/NRRC/publications.htm.
403
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
1994) refers to the linguistic expression of private states, hence the names for the two
types of private state annotations.
All expressive subjective elements are included in the set of annotations that have
the possibility of being sentiment expressions, but the direct subjective frames to include
in this set can be pared down further. Direct subjective frames have an attribute, expres-
sion intensity, that captures the contribution of the annotated word or phrase to the
overall intensity of the private state being expressed. Expression intensity ranges from
neutral to high. In the given sentences, fears and praised have an expression intensity of
medium, and said has an expression intensity of neutral. A neutral expression intensity
indicates that the direct subjective phrase itself is not contributing to the expression
of the private state. If this is the case, then the direct subjective phrase cannot be
a sentiment expression. Thus, only direct subjective annotations with a non-neutral
expression intensity are included in the set of annotations that have the possibility of
being sentiment expressions. We call this set of annotations, the union of the expres-
sive subjective elements and the direct subjective frames with a non-neutral intensity,
the subjective expressions in the corpus; these are the annotations we will mark for
contextual polarity.
Table 1 gives a sample of subjective expressions marked in the MPQA corpus.
Although many of the words and phrases express what we typically think of as
sentiments, others do not, for example, believes, very definitely, and unconditionally and
without delay.
Now that we have identified which annotations have the possibility of being sen-
timent expressions, the next question is which of these annotated words and phrases
are actually expressing sentiments. We define a sentiment as a positive or negative
emotion, evaluation, or stance. On the left of Table 2 are examples of positive sentiments;
examples of negative sentiments are on the right.
Table 1
Sample of subjective expressions from the MPQA corpus.
victory of justice and freedom
grown tremendously
such animosity
throttling the voice
disdain and wrath
so exciting
could not have wished for a better situation
freak show
if you’re not with us, you’re against us
vehemently denied
everything good and nice
under no circumstances
most fraudulent, terrorist and extremist
number one democracy
seems to think
indulging in blood-shed and their lunaticism surprised, to put it mildly
take justice to pre-historic times
such a disadvantageous situation
must
not true at all
imperative for harmonious society
glorious
disastrous consequences
believes
the embodiment of two-sided justice
appalling
very definitely
once and for all
shameful mum
enthusiastically asked
hate
gross misstatement
unconditionally and without delay
so conservative that it makes Pat Buchanan look vegetarian
those digging graves for others, get engraved themselves
lost the reputation of commitment to principles of human justice
ultimately the demon they have reared will eat up their own vitals
404
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
Table 2
Examples of positive and negative sentiments.
Positive sentiments Negative sentiments
Emotion
I’m happy
Evaluation Great idea!
Stance
She supports the bill
I’m sad
Bad idea!
She’s against the bill
The final issue to address is the actual annotation scheme for marking contextual
polarity. The scheme we developed has four tags: positive, negative, both, and neutral.
The positive tag is used to mark positive sentiments. The negative tag is used to mark
negative sentiments. The both tag is applied to expressions in which both a positive and
negative sentiment are being expressed. Subjective expressions with positive, negative, or
both tags are our sentiment expressions. The neutral tag is used for all other subjective
expressions, including emotions, evaluations, and stances that are neither positive or
negative. Instructions for the contextual-polarity annotation scheme are available at
http://www.cs.pitt.edu/mpqa/databaserelease/polarityCodingInstructions.txt.
Following are examples from the corpus of each of the different contextual-polarity
annotations. Each underlined word or phrase is a subjective expression that was marked
in the original MPQA annotations.3 In bold following each subjective expression is the
contextual polarity with which it was annotated.
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
(7) Thousands of coup supporters celebrated (positive) overnight, waving
flags, blowing whistles . . .
(8) The criteria set by Rice are the following: the three countries in question are
repressive (negative) and grave human rights violators (negative) . . .
(9) Besides, politicians refer to good and evil (both) only for purposes of
intimidation and exaggeration.
(10) Jerome says the hospital feels (neutral) no different than a hospital in the
states.
As a final note on the annotation scheme, annotators are asked to judge the con-
textual polarity of the sentiment that is ultimately being conveyed by the subjective
expression, that is, once the sentence has been fully interpreted. Thus, the subjective
expression, they have not succeeded, and will never succeed, is marked as positive in the
following sentence:
(11) They have not succeeded, and will never succeed (positive), in breaking
the will of this valiant people.
The reasoning is that breaking the will of a valiant people is negative, so to not succeed
in breaking their will is positive.
3 Some sentences contain additional subjective expressions that are not underlined as examples.
405
Computational Linguistics
Volume 35, Number 3
Table 3
Contingency table for contextual polarity agreement.
Neutral
Positive Negative
Both
Total
Neutral
Positive
Negative
Both
Total
123
16
14
0
153
14
73
2
3
92
24
5
167
0
196
0
2
1
3
6
161
96
184
6
447
Table 4
Contingency table for contextual polarity agreement, borderline cases removed.
Neutral
Positive Negative
Both
Total
Neutral
Positive
Negative
Both
Total
113
9
5
0
127
7
59
2
2
70
8
3
156
0
167
0
0
1
2
3
128
71
164
4
367
3.2 Agreement Study
To measure the reliability of the polarity annotation scheme, we conducted an agree-
ment study with two annotators4 using 10 documents from the MPQA corpus. The 10
documents contain 447 subjective expressions. Table 3 shows the contingency table for
the two annotators’ judgments. Overall agreement is 82%, with a kappa value of 0.72.
As part of the annotation scheme, annotators are asked to judge how certain they
are in their polarity tags. For 18% of the subjective expressions, at least one annotator
used the uncertain tag when marking polarity. If we consider these cases to be borderline
and exclude them from the study, percent agreement increases to 90% and kappa rises to
0.84. Table 4 shows the revised contingency table with the uncertain cases removed. This
shows that annotator agreement is especially high when both annotators are certain, and
that annotators are certain for over 80% of their tags.
Note that all annotations are included in the experiments.
3.3 Contextual Polarity Annotations
In total, all 19,962 subjective expressions in the 535 documents (11,112 sentences) of the
MPQA corpus were annotated with their contextual polarity as just described.5 Three
annotators carried out the task: the two who participated in the annotation study and
a third who was trained later.6 Table 5 gives the distribution of the contextual polarity
tags. Looking at this table, we see that a small majority of subjective expressions (54.6%)
4 Both annotators are authors of this article.
5 The revised version of the MPQA corpus with the contextual polarity annotations is available at
http://www.cs.pitt.edu/mpqa.
6 The third annotator received training until her reliability of performance on the task was comparable to
that of the first two annotators who participated in the study.
406
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
Table 5
Distribution of contextual polarity tags.
Neutral
Positive Negative
Both
Total
9,057
45.4%
3,311
16.6%
7,294
36.5%
299
19,961
1.5% 100%
are expressing a positive, negative, or both (positive and negative) sentiment. We refer to
these expressions as polar in context. Many of the subjective expressions are neutral
and do not express a sentiment. This suggests that, although sentiment is a major type
of subjectivity, distinguishing other prominent types of subjectivity will be important
for future work in subjectivity analysis.
As many NLP applications operate at the sentence level, one important issue to
consider is the distribution of sentences with respect to the subjective expressions
they contain. In the 11,112 sentences in the MPQA corpus, 28% contain no subjective
expressions, 24% contain only one, and 48% contain two or more. Of the 5,304 sentences
containing two or more subjective expressions, 17% contain mixtures of positive and
negative expressions, and 61% contain mixtures of polar (positive/negative/both) and
neutral subjective expressions.
4. Prior-Polarity Subjectivity Lexicon
For the experiments in this article, we use a lexicon of over 8,000 subjectivity clues.
Subjectivity clues are words and phrases that may be used to express private states. In
other words, subjectivity clues have subjective usages, though they may have objective
usages as well. For this work, only single-word clues are used.
To compile the lexicon, we began with the list of subjectivity clues from Riloff and
Wiebe (2003), which includes the positive and negative adjectives from Hatzivassiloglou
and McKeown (1997). The words in this list were grouped in previous work according
to their reliability as subjectivity clues. Words that are subjective in most contexts are
considered strong subjective clues, indicated by the strongsubj tag. Words that may
only have certain subjective usages are considered weak subjective clues, indicated by
the weaksubj tag.
We expanded the list using a dictionary and a thesaurus, and added words from the
General Inquirer positive and negative word lists (Stone et al. 1966) that we judged to be
potentially subjective.7 We also gave the new words strongsubj and weaksubj reliability
tags. The final lexicon has a coverage of 67% of subjective expressions in the MPQA
corpus, where coverage is the percentage of subjective expressions containing one or
more instances of clues from the lexicon. The coverage of just sentiment expressions is
even higher: 75%.
The next step was to tag the clues in the lexicon with their prior polarity: positive,
negative, both, or neutral. A word in the lexicon is tagged as positive if out of context
it seems to evoke something positive, and negative if it seems to evoke something
negative. If a word has both positive and negative meanings, it is tagged with the
polarity that seems the most common. A word is tagged as both if it is at the same time
7 In the end, about 70% of the words from the General Inquirer positive word list and 80% of the words
from the negative word list were included in the subjectivity lexicon.
407
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
both positive and negative. For example, the word bittersweet evokes something both
positive and negative. Words like brag are also tagged as both, because the one who is
bragging is expressing something positive, yet at the same time describing someone as
bragging is expressing a negative evaluation of that person. A word is tagged as neutral
if it does not evoke anything positive or negative.
For words that came from positive and negative word lists (Stone et al. 1966;
Hatzivassiloglou and McKeown 1997), we largely retained their original polarity.
However, we did change the polarity of a word if we strongly disagreed with its
original class.8 For example, the word apocalypse is listed as positive in the General
Inquirer; we changed its prior polarity to negative for our lexicon.
By far, the majority of clues in the lexicon (92.8%) are marked as having either
positive (33.1%) or negative (59.7%) prior polarity. Only a small number of clues (0.3%)
are marked as having both positive and negative polarity. We refer to the set of clues
marked as positive, negative, or both as sentiment clues. A total of 6.9% of the clues in
the lexicon are marked as neutral. Examples of neutral clues are verbs such as feel, look,
and think, and intensifiers such as deeply, entirely, and practically. Although the neutral
clues make up a small proportion of the total words in the lexicon, we retain them for
our later experiments in recognizing contextual polarity because many of them are good
clues that a sentiment is being expressed (e.g., feels slighted, feels satisfied, look kindly on,
look forward to). Including them increases the coverage of the system.
At the end of the previous section, we considered the distribution of sentences in the
MPQA corpus with respect to the subjective expressions they contain. It is interesting
to compare that distribution with the distribution of sentences with respect to the
instances they contain of clues from the lexicon. We find that there are more sentences
with two or more clue instances (62%) than sentences with two or more subjective
expressions (48%). More importantly, many more sentences have mixtures of positive
and negative clue instances than actually have mixtures of positive and negative sub-
jective expressions. Only 880 sentences have a mixture of both positive and negative
subjective expressions, whereas 3,234 sentences have a mixture of positive and negative
clue instances. Thus, a large number of positive and negative instances are either neutral
in context, or they are combining to form more complex polarity expressions. Either
way, this provides strong evidence of the need to be able to disambiguate the contextual
polarity of subjectivity and sentiment clues.
5. Definition of the Gold Standard
In the experiments described in the following sections, the goal is to classify the con-
textual polarity of the expressions that contain instances of the subjectivity clues in our
lexicon. However, determining which clue instances are part of the same expression and
identifying expression boundaries are not the focus of this work. Thus, instead of trying
to identify and label each expression, in the following experiments, each clue instance
is labeled individually as to its contextual polarity.
We define the gold-standard contextual polarity of a clue instance in terms of the
manual annotations (Section 3) as follows. If a clue instance is not in a subjective
expression (and therefore not in a sentiment expression), its gold class is neutral. If
a clue instance appears in just one subjective expression or in multiple subjective
8 We decided on a different polarity for about 80 of the words in our lexicon that appeared on other
positive and negative word lists.
408
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
expressions with the same contextual polarity, its gold class is the contextual polarity
of the subjective expression(s). If a clue instance appears in a mixture of negative and
neutral subjective expressions, its gold class is negative; if it is in a mixture of positive and
neutral subjective expressions, its gold class is positive. Finally, if a clue instance appears
in at least one positive and one negative subjective expression (or in a subjective ex-
pression marked as both), then its gold class is both. A clue instance can appear in more
than one subjective expression because in the MPQA annotation scheme, it is possible
for direct subjective frames and expressive subjective elements frames to overlap.
6. A Prior-Polarity Classifier
Before delving into the task of recognizing contextual polarity, an important question
to address is how useful prior polarity alone is for identifying contextual polarity. To
answer this question, we create a classifier that simply assumes the contextual polarity
of a clue instance is the same as the clue’s prior polarity. We explore this classifier’s
performance on a small amount of development data, which is not part of the data used
in the subsequent experiments.
This simple classifier has an accuracy of 48%. From the confusion matrix given in
Table 6, we see that 76% of the errors result from words with non-neutral prior polarity
appearing in phrases with neutral contextual polarity. Only 12% of the errors result from
words with neutral prior polarity appearing in expressions with non-neutral contextual
polarity, and only 11% of the errors come from words with a positive or negative prior
polarity appearing in expressions with the opposite contextual polarity. Table 6 also
shows that positive clues tend to be used in negative expressions far more often than
negative clues tend to be used in positive expressions.
Given that by far the largest number of errors come from clues with positive,
negative, or both prior polarity appearing in neutral contexts, we were motivated to try
a two-step approach to the problem of sentiment classification. The first step, Neutral–
Polar Classification, tries to determine if an instance is neutral or polar in context. The
second step, Polarity Classification, takes all instances that step one classified as polar,
and tries to disambiguate their contextual polarity. This two-step approach is illustrated
in Figure 1.
7. Features
The features used in our experiments were motivated both by the literature and by
exploration of the contextual-polarity annotations in our development data. A number
Table 6
Confusion matrix for the prior-polarity classifier on the development set.
Prior-Polarity Classifier
Neutral
Positive Negative
Both
Total
Neutral
Gold
Positive
Class Negative
Both
Total
798
81
149
4
1032
784
371
181
11
1347
698
40
622
13
1373
4
0
0
5
9
2284
492
952
33
3761
409
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
Figure 1
Two-step approach to recognizing contextual polarity.
of features were inspired by the paper on contextual-polarity influencers by Polanyi
and Zaenan (2004). Other features are those that have been found useful in the past
for recognizing subjective sentences (Wiebe, Bruce, and O’Hara 1999; Wiebe and Riloff
2005).
7.1 Features for Neutral–Polar Classification
For distinguishing between neutral and polar instances, we use the features listed in
Table 7. For ease of description, we group the features into six sets: word features, gen-
eral modification features, polarity modification features, structure features, sentence
features, and one document feature.
Word Features In addition to the word token (the token of the clue instance being
classified), the word features include the parts of speech of the previous word, the word
itself, and the next word. The prior polarity and reliability class features represent those
pieces of information about the clue which are taken from the lexicon.
General Modification Features These are binary features that capture different
types of relationships involving the clue instance.
The first four features involve relationships with the word immediately before or af-
ter the clue instance. The preceded by adjective feature is true if the clue instance is a noun
preceded by an adjective. The preceded by adverb feature is true if the preceding word
is an adverb other than not. The preceded by intensifier feature is true if the preceding
word is an intensifier, and the self intensifier feature is true if the clue instance itself is an
intensifier. A word is considered to be an intensifier if it appears in a list of intensifiers
and if it precedes a word of the appropriate part of speech (e.g., an intensifier adjective
must come before a noun). The list of intensifiers is a compilation of those listed in Quirk
et al. (1985), intensifiers identified from existing entries in the subjectivity lexicon, and
intensifiers identified during explorations of the development data.
The modifies/modifed by features involve the dependency parse tree of the sentence,
obtained by first parsing the sentence (Collins 1997) and then converting the tree into
its dependency representation (Xia and Palmer 2001). In a dependency representation,
every node in the tree structure is a surface word (i.e., there are no abstract nodes such
as NP or VP). The parent word is called the head, and its children are its modifiers. The
410
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
Table 7
Features for neutral–polar classification.
Word Features
word token
word part of speech
previous word part of speech
next word part of speech
prior polarity: positive, negative, both, neutral
reliability class: strongsubj or weaksubj
General Modification Features
preceded by adjective: binary
preceded by adverb (other than not): binary
preceded by intensifier: binary
self intensifier: binary
modifies strongsubj: binary
modifies weaksubj: binary
modified by strongsubj: binary
modified by weaksubj: binary
Polarity Modification Features
modifies polarity: positive, negative, neutral, both, notmod
modified by polarity: positive, negative, neutral, both, notmod
conjunction polarity: positive, negative, neutral, both, notmod
Structure Features
in subject: binary
in copular: binary
in passive: binary
Sentence Features
strongsubj clues in current sentence: 0, 1, 2, 3 (or more)
strongsubj clues in previous sentence: 0, 1, 2, 3 (or more)
strongsubj clues in next sentence: 0, 1, 2, 3 (or more)
weaksubj clues in current sentence: 0, 1, 2, 3 (or more)
weaksubj clues in previous sentence: 0, 1, 2, 3 (or more)
weaksubj clues in next sentence: 0, 1, 2, 3 (or more)
adjectives in sentence: 0, 1, 2, 3 (or more)
adverbs in sentence (other than not): 0, 1, 2, 3 (or more)
cardinal number in sentence: binary
pronoun in sentence: binary
modal in sentence (other than will): binary
Document Feature
document topic/domain
edge between a parent and a child specifies the grammatical relationship between the
two words. Figure 2 shows an example of a dependency parse tree. Instances of clues in
the tree are marked with the clue’s prior polarity and reliability class from the lexicon.
For each clue instance, the modifies/modifed by features capture whether there are
adj, mod, or vmod relationships between the clue instance and any other instances from
the lexicon. Specifically, the modifies strongsubj feature is true if the clue instance and
its parent share an adj, mod, or vmod relationship, and if its parent is an instance of
a strongsubj clue from the lexicon. The modifies weaksubj feature is the same, except
that it looks in the parent for an instance of a weaksubj clue. The modified by strongsubj
411
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
Figure 2
The dependency tree for the sentence The human rights report poses a substantial challenge to the
U.S. interpretation of good and evil. Prior polarity and reliability class are marked in parentheses
for words that match clues from the lexicon.
feature is true for a clue instance if one of its children is an instance of a strongsubj
clue, and if the clue instance and its child share an adj, mod, or vmod relationship. The
modified by weaksubj feature is the same, except that it looks for instances of weaksubj
clues in the children. Although the adj and vmod relationships are typically local, the
mod relationship involves longer-distance as well as local dependencies. Figure 2 helps
to illustrate these features. The modifies weaksubj feature is true for substantial, because
substantial modifies challenge, which is an instance of a weaksubj clue. For rights, the
modifies weaksubj feature is false, because rights modifies report, which is not an instance
of a weaksubj clue. The modified by weaksubj feature is false for substantial, because it has
no modifiers that are instances of weaksubj clues. For challenge, the modified by weaksubj
feature is true because it is being modified by substantial, which is an instance of a
weaksubj clue.
Polarity Modification Features The modifies polarity, modified by polarity, and conj
polarity features capture specific relationships between the clue instance and other senti-
ment clues it may be related to. If the clue instance and its parent in the dependency tree
share an obj, adj, mod, or vmod relationship, the modifies polarity feature is set to the prior
polarity of the parent. If the parent is not in the prior-polarity lexicon, its prior polarity
is considered neutral. If the clue instance is at the root of the tree and has no parent,
the value of the feature is notmod. The modified by polarity feature is similar, looking
for adj, mod, and vmod relationships and other sentiment clues in the children of the clue
instance. The conj polarity feature determines if the clue instance is in a conjunction. If so,
the value of this feature is its sibling’s prior polarity. As before, if the sibling is not in the
412
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
lexicon, its prior polarity is neutral. If the clue instance is not in a conjunction, the value
for this feature is notmod. Figure 2 also helps to illustrate these modification features. The
word substantial with positive prior polarity modifies the word challenge with negative
prior polarity. Therefore the modifies polarity feature is negative for substantial, and the
modified by polarity feature is positive for challenge. The words good and evil are in a con-
junction together; thus the conj polarity feature is negative for good and positive for evil.
Structure Features These are binary features that are determined by starting with
the clue instance and climbing up the dependency parse tree toward the root, looking
for particular relationships, words, or patterns. The in subject feature is true if we find
a subj relationship on the path to the root. The in copular feature is true if in subject is
false and if a node along the path is both a main verb and a copular verb. The in passive
feature is true if a passive verb pattern is found on the climb.
The in subject and in copular features were motivated by the intuition that the syn-
tactic role of a word may influence whether a word is being used to express a sentiment.
For example, consider the word polluters in each of the following two sentences.
(12) Under the application shield, polluters are allowed to operate if they have
a permit.
(13) “The big-city folks are pointing at the farmers and saying you are
polluters . . . ”
In the first sentence, polluters is simply being used as a referring expression. In the
second sentence, polluters is clearly being used to express a negative evaluation of the
farmers. The motivation for the in passive feature was previous work by Riloff and Wiebe
(2003), who found that different words are more or less likely to be subjective depending
on whether they are in the active or passive.
Sentence Features These are features that previously were found useful for
sentence-level subjectivity classification (Wiebe, Bruce, and O’Hara 1999; Wiebe and
Riloff 2005). They include counts of strongsubj and weaksubj clue instances in the cur-
rent, previous and next sentences, counts of adjectives and adverbs other than not in
the current sentence, and binary features to indicate whether the sentence contains a
pronoun, a cardinal number, and a modal other than will.
Document Feature There is one document feature representing the topic or domain
of the document. The motivation for this feature is that whether or not a word is
expressing a sentiment or even a private state in general may depend on the subject
of the discourse. For example, the words fever and sufferer may express a negative
sentiment in certain contexts, but probably not in a health or medical context, as is the
case in the following sentence.
(14) The disease can be contracted if a person is bitten by a certain tick or if a
person comes into contact with the blood of a congo fever sufferer.
In the creation of the MPQA corpus, about two-thirds of the documents were
selected to be on one of the 10 topics listed in Table 8. The documents for each topic were
identified by human searches and by an information retrieval system. The remaining
documents were semi-randomly selected from a very large pool of documents from
the world press. In the corpus, these documents are listed with the topic miscellaneous.
Rather than leaving these documents unlabeled, we chose to label them using the
413
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
Table 8
Topics in the MPQA corpus.
Topic
Description
Economic collapse in Argentina
argentina
axisofevil
U.S. President’s State of the Union Address
guantanamo Detention of prisoners in Guantanamo Bay
humanrights U.S. State Department Human Rights Report
kyoto
settlements
space
taiwan
venezuela
zimbabwe
Kyoto Protocol ratification
Israeli settlements in Gaza and the West Bank
Space missions of various countries
Relationship between Taiwan and China
Presidential coup in Venezuela
Presidential election in Zimbabwe
following general domain categories: economics, general politics, health, report events,
and war and terrorism.
7.2 Features for Polarity Classification
Table 9 lists the features that we use for step two, polarity classification. Word token,
word prior polarity, and the polarity-modification features are the same as described for
neutral–polar classification.
We use two features to capture two different types of negation. The negated feature
is a binary feature that is used to capture more local negations: Its value is true if a
negation word or phrase is found within the four words preceding the clue instance,
and if the negation word is not also in a phrase that acts as an intensifier rather than a
negator. Examples of phrases that intensify rather than negate are not only and nothing if
not. The negated subject feature captures a longer-distance type of negation. This feature
Table 9
Features for polarity classification.
Word Features
word token
word prior polarity: positive, negative, both, neutral
Negation Features
negated: binary
negated subject: binary
Polarity Modification Features
modifies polarity: positive, negative, neutral, both, notmod
modified by polarity: positive, negative, neutral, both, notmod
conj polarity: positive, negative, neutral, both, notmod
Polarity Shifters
general polarity shifter: binary
negative polarity shifter: binary
positive polarity shifter: binary
414
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
is true if the subject of the clause containing the clue instance is negated. For example,
the negated subject feature is true for support in the following sentence.
(15) No politically prudent Israeli could support either of them.
The last three polarity features look in a window of four words before the clue
instance, searching for the presence of particular types of polarity influencers. Gen-
eral polarity shifters reverse polarity (e.g., little truth, little threat). Negative polarity
shifters typically make the polarity of an expression negative (e.g., lack of understand-
ing). Positive polarity shifters typically make the polarity of an expression positive
(e.g., abate the damage). The polarity influencers that we used were identified through
explorations of the development data.
8. Experiments in Recognizing Contextual Polarity
We have two primary goals with our experiments in recognizing contextual polarity.
The first is to evaluate the features described in Section 7 as to their usefulness for
this task. The second is to investigate the importance of recognizing neutral instances—
recognizing when a sentiment clue is not being used to express a sentiment—for classi-
fying contextual polarity.
To evaluate features, we investigate their performance, both together and sep-
arately, across several different learning algorithms. Varying the learning algorithm
allows us to verify that the features are robust and that their performance is not the
artifact of a particular algorithm. We experiment with four different types of machine
learning: boosting, memory-based learning, rule learning, and support vector learning.
For boosting, we use BoosTexter (Schapire and Singer 2000) AdaBoost.MH. For rule
learning, we use Ripper (Cohen 1996). For memory-based learning, we use TiMBL
(Daelemans et al. 2003b) IB1 (k-nearest neighbor). For support vector learning, we
use SVM-light and SVM-multiclass (Joachims 1999). SVM-light is used for the experi-
ments involving binary classification (neutral–polar classification), and SVM-multiclass
is used for experiments with more than two classes. These machine learning algorithms
were chosen because they have been used successfully for a number of natural language
processing tasks, and they represent several different types of learning.
For all of the classification algorithms except for SVM, the features for a clue in-
stance are represented as they are presented in Section 7. For SVM, the representations
for numeric and discrete-valued features are changed. Numeric features, such as the
count of strongsubj clue instances in a sentence, are scaled to range between 0 and 1.
Discrete-valued features, such as the reliability class feature, are converted into multiple
binary features. For example, the reliability class feature is represented by two binary
features: one for whether the clue instance is a strongsubj clue and one for whether the
clue instance is a weaksubj clue.
To investigate the importance of recognizing neutral instances, we perform two sets
of polarity classification (step two) experiments. First, we experiment with classifying
the polarity of all gold-standard polar instances—the clue instances identified as polar
in context by the manual polarity annotations. Second, we experiment with using the
polar instances identified automatically by the neutral–polar classifiers. Because the
second set of experiments includes the neutral instances misclassified in step one, we
can compare results for the two sets of experiments to see how the noise of neutral
instances affects the performance of the polarity features.
415
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
All experiments are performed using 10-fold cross validation over a test set of
10,287 sentences from 494 MPQA corpus documents. We measure performance in terms
of accuracy, recall, precision, and F-measure. Accuracy is simply the total number of
instances correctly classified. Recall, precision, and F-measure for a given class C are
defined as follows. Recall is the percentage of all instances of class C correctly identified.
Rec(C) =
| instances of C correctly identified |
| all instances of C |
Precision is the percentage of instances classified as class C that are class C in truth.
Prec(C) =
| instances of C correctly identified |
| all instances identified as C |
F-measure is the harmonic mean of recall and precision.
F(C) =
2 ×Rec(C) × Prec(C)
Rec(C) + Prec(C)
All results reported are averages over the 10 folds.
8.1 Neutral–Polar Classification
In our two-step process for recognizing contextual polarity, the first step is neutral–polar
classification, determining whether each instance of a clue from the lexicon is neutral or
polar in context. In our test set, there are 26,729 instances of clues from the lexicon. The
features we use for this step were listed above in Table 7 and described in Section 7.1.
In this section, we perform two sets of experiments. In the first, we compare
the results of neutral–polar classification using all the neutral–polar features against
two baselines. The first baseline uses just the word token feature. The second baseline
(word+priorpol) uses the word token and prior polarity features. In the second set of
experiments, we explore the performance of different sets of features for neutral–polar
classification.
Research has shown that the performance of learning algorithms for NLP tasks can
vary widely depending on their parameter settings, and that the optimal parameter
settings can also vary depending on the set of features being evaluated (Daelemans
et al. 2003a; Hoste 2005). Although the goal of this work is not to identify the optimal
configuration for each algorithm and each set of features, we still want to make a rea-
sonable attempt to find a good configuration for each algorithm. To do this, we perform
10-fold cross validation of the more challenging baseline classifier (word+priorpol)
on the development data, varying select parameter settings. The results from those
experiments are then used to select the parameter settings for each algorithm. For
BoosTexter, we vary the number of rounds of boosting. For TiMBL, we vary the value
for k (the number of neighbors) and the distance metric (overlap or modified value
difference metric [MVDM]). For Ripper, we vary whether negative tests are disallowed
for nominal (-!n) and set (-!s) valued attributes and how much to simplify the hypothesis
(-S). For SVM, we experiment with linear, polynomial, and radial basis function kernels.
Table 10 gives the settings selected for the neutral–polar classification experiments for
the different learning algorithms.
416
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
Table 10
Algorithm settings for neutral–polar classification.
Algorithm
BoosTexter
TiMBL
Ripper
SVM
Settings
2,000 rounds of boosting
k=25, MVDM distance metric
-!n, -S 0.5
linear kernel
8.1.1 Classification Results. The results for the first set of experiments are given in
Table 11. For each algorithm, we give the results for the two baseline classifiers, followed
by the results for the classifier trained using all the neutral–polar features. The results
shown in bold are significantly better than both baselines (two-sided t-test, p ≤ 0.05) for
the given algorithm.
Working together, how well do the neutral–polar features perform? For BoosTexter,
TiMBL, and Ripper, the classifiers trained using all the features improve significantly
over the two baselines in terms of accuracy, polar recall, polar F-measure, and neutral
precision. Neutral F-measure is also higher, but not significantly so. These consistent
results across three of the four algorithms show that the neutral–polar features are
helpful for determining when a sentiment clue is actually being used to express a
sentiment.
Interestingly, Ripper is the only algorithm for which the word-token baseline per-
formed better than the word+priorpol baseline. Nevertheless, the prior polarity feature
is an important component in the performance of the Ripper classifier using all the
features. Excluding prior polarity from this classifier results in a significant decrease in
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
Table 11
Results for neutral–polar classification (step one).
Polar
Neutral
Acc
Rec
Prec
F
Rec
Prec
F
74.0
75.0
76.5
74.6
74.6
76.5
66.3
65.5
71.4
74.6
75.6
75.3
41.9
55.6
58.3
47.9
48.2
59.5
11.2
07.7
49.4
47.9
54.5
52.6
77.0
70.2
72.4
73.9
73.7
71.7
80.6
84.5
64.6
73.9
72.5
72.7
54.3
62.1
64.6
58.1
58.3
65.0
19.6
14.1
56.0
58.1
62.2
61.0
92.7
86.2
87.1
90.1
90.0
86.3
98.4
99.1
84.2
90.1
88.0
88.5
73.3
76.9
78.2
74.8
74.9
78.5
65.6
64.8
74.1
74.8
76.8
76.2
81.8
81.3
82.4
81.8
81.7
82.3
78.7
78.4
78.8
81.8
82.0
81.9
BoosTexter
word token baseline
word+priorpol baseline
neutral–polar features
TiMBL
word token baseline
word+priorpol baseline
neutral–polar features
Ripper
word token baseline
word+priorpol baseline
neutral–polar features
SVM
word token baseline
word+priorpol baseline
neutral–polar features
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
417
Computational Linguistics
Volume 35, Number 3
performance for every metric. Decreases range from 2.5% for neutral recall to 9.5% for
polar recall.
The best SVM classifier is the word+priorpol baseline. In terms of accuracy, this
classifier does not perform much worse than the BoosTexter and TiMBL classifiers that
use all the neutral–polar features: The SVM word+priorpol baseline classifier has an
accuracy of 75.6%, and both the BoosTexter and TiMBL classifiers have an accuracy of
76.5%. However, the BoosTexter and TiMBL classifiers using all the features perform
notably better in terms of polar recall and F-measure. The BoosTexter and TiMBL
classifiers have polar recalls that are 7% and 9.2% higher than the SVM baseline. Polar
F-measures for BoosTexter and TiMBL are 3.9% and 4.5% higher. These increases are
significant for p ≤ 0.01.
8.1.2 Feature Set Evaluation. To evaluate the contribution of the various features for
neutral–polar classification, we perform a series of experiments in which different
sets of neutral–polar features are added to the word+priorpol baseline and new clas-
sifiers are trained. We then compare the performance of these new classifiers to the
word+priorpol baseline, with the exception of the Ripper classifiers, which we compare
to the higher word baseline. Table 12 lists the sets of features tested in these experiments.
The feature sets generally correspond to how the neutral–polar features are presented
in Table 7, although some of the groups are broken down into more fine-grained sets
that we believe capture meaningful distinctions.
Table 13 gives the results for these experiments. Increases and decreases for a
given metric as compared to the word+priorpol baseline (word baseline for Ripper)
are indicated by + or –, respectively. Where changes are significant at the p ≤ 0.1 level,
++ or – – are used, and where changes are significant at the p ≤ 0.05 level, +++ or – – –
are used. An “nc” indicates no change (a change of less than ± 0.05) compared to the
baseline.
What does Table 13 reveal about the performance of various feature sets for neutral–
polar classification? Most noticeable is that no individual feature sets stand out as strong
performers. The only significant improvements in accuracy come from the PARTS-
OF-SPEECH and RELIABILITY-CLASS feature sets for Ripper. These improvements are
perhaps not surprising given that the Ripper baseline was much lower to begin with.
Very few feature sets show any improvement for SVM. Again, this is not unexpected
given that all the features together performed worse than the word+priorpol baseline
Table 12
Neutral–polar feature sets for evaluation.
Features
parts of speech for clue instance, previous word, and next word
reliability class of clue instance
preceded by adjective, preceded by adverb
preceded by intensifier, self intensifier
modifies strongsubj/weaksubj, modified by strongsubj/weaksubj
polarity-modification features
structure features
strongsubj/weaksubj clue instances in sentence
strongsubj/weaksubj clue instances in previous/next sentence
adjectives/adverbs/cardinal number/pronoun/modal in sentence
document topic
Experiment
PARTS-OF-SPEECH
RELIABILITY-CLASS
PRECEDED-POS
INTENSIFY
RELCLASS-MOD
POLARITY-MOD
STRUCTURE
CURSENT-COUNTS
PNSENT-COUNTS
CURSENT-OTHER
TOPIC
418
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
–
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
–
0
1
2
–
r
1
–
0
6
–
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
Table 13
Results for neutral–polar feature ablation experiments.
Polar Neut
BoosTexter
Acc
F
F
Ripper
PARTS-OF-SPEECH
RELIABILITY-CLASS
PRECEDED-POS
INTENSIFY
RELCLASS-MOD
POLARITY-MOD
STRUCTURE
CURSENT-COUNTS
PNSENT-COUNTS
CURSENT-OTHER
TOPIC
+
+
nc
–
+
nc
–
+
+
nc
+
–
–
–
nc
++
–
– – –
– – –
– – –
–
+
+
+
nc
–
+
+
+
+
+
+
+
PARTS-OF-SPEECH
RELIABILITY-CLASS
PRECEDED-POS
INTENSIFY
RELCLASS-MOD
POLARITY-MOD
STRUCTURE
CURSENT-COUNTS
PNSENT-COUNTS
CURSENT-OTHER
TOPIC
Polar Neut
F
F
+++
+++
–
– – –
+++
+++
+
+++
+++
+++
+++
– – –
+
–
–
+
–
–
– – –
– – –
– – –
– – –
Acc
+++
+++
–
–
+
–
–
– –
– – –
– – –
–
Polar Neut
Polar Neut
TiMBL
Acc
F
F
SVM
Acc
F
F
PARTS-OF-SPEECH
RELIABILITY-CLASS
PRECEDED-POS
INTENSIFY
RELCLASS-MOD
POLARITY-MOD
STRUCTURE
CURSENT-COUNTS
PNSENT-COUNTS
CURSENT-OTHER
TOPIC
+
+
nc
nc
+
+
nc
–
+
+
–
+++
+
+
nc
+
+
+
+
+++
+++
+
+
nc
nc
nc
+
+
–
–
–
–
–
PARTS-OF-SPEECH
RELIABILITY-CLASS
PRECEDED-POS
INTENSIFY
RELCLASS-MOD
POLARITY-MOD
STRUCTURE
CURSENT-COUNTS
PNSENT-COUNTS
CURSENT-OTHER
TOPIC
– –
+
nc
nc
nc
– –
–
–
–
–
–
– – –
–
nc
nc
+
– – –
+
–
–
–
–
–
+
nc
nc
nc
– –
–
–
–
–
–
Increases and decreases for a given metric as compared to the word+priorpol baseline
(word baseline for Ripper) are indicated by + or –, respectively; ++ or – – indicates the
change is significant at the p < 0.1 level; +++ or – – – indicates significance at the
p < 0.05 level; nc indicates no change.
for SVM. The performance of the feature sets for BoosTexter and TiMBL are perhaps
the most revealing. In the previous experiments using all the features together, these
algorithms produced classifiers with the same high performance. In these experiments,
six different feature sets for each algorithm show improvements in accuracy over the
baseline, yet none of those improvements are significant. This suggests that achieving
the highest performance for neutral–polar classification requires a wide variety of fea-
tures working together in combination.
We further test this result by evaluating the effect of removing the features that
produced either no change or a drop in accuracy from the respective all-feature classi-
fiers. For example, we train a TiMBL neutral–polar classifier using all the features except
for those in the PRECEDED-POS, INTENSIFY, STRUCTURE, CURSENT-COUNTS, and TOPIC
feature sets, and then compare the performance of this new classifier to the TiMBL, all-
feature classifier. Although removing the non-performing features has little effect for
BoosTexter, performance does drop for both TiMBL and Ripper. The primary source of
this performance drop is a decrease in polar recall: 2% for TiMBL and 3.2% for Ripper.
419
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
Although no feature sets stand out in Table 13 as far as giving an overall high
performance, there are some features that consistently improve performance across
the different algorithms. The reliability class of the clue instance (RELIABILITY-CLASS)
improves accuracy over the baseline for all four algorithms. It is the only feature that
does so. The RELCLASS-MOD features give improvements for all metrics for BoosTexter,
Ripper, and TiMBL, as well as improving polar F-measure for SVM. The PARTS-OF-
SPEECH features are also fairly consistent, improving performance for all the algorithms
except for SVM. There are also a couple of feature sets that consistently do not improve
performance for any of the algorithms: the INTENSIFY and PRECEDED-POS features.
8.2 Polarity Classification
For the second step of recognizing contextual polarity, we classify the polarity of all clue
instances identified as polar in step one. The features for polarity classification were
listed in Table 9 and described in Section 7.2.
We investigate the performance of the polarity features under two conditions:
(1) perfect neutral–polar recognition and (2) automatic neutral–polar recognition. For
condition 1, we identify the polar instances according to the gold-standard, manual
contextual-polarity annotations. In the test data, 9,835 instances of the clues from the
lexicon are polar in context according to the manual annotations. Experiments under
condition 1 classify these instances as having positive, negative, or both (positive and
negative) polarity. For condition 2, we take the best performing neutral–polar classifier
for each algorithm and use the output from those algorithms to identify the polar
instances. Because polar instances now are being identified automatically, there will be
noise in the form of misclassified neutral instances. Therefore, for experiments under
condition 2 we include the neutral class and perform four-way classification instead of
three-way. Condition 1 allows us to investigate the performance of the different polarity
features without the noise of misclassified neutral instances. Also, because the set of
polar instances being classified is the same for all the algorithms, condition 1 allows
us to compare the performance of the polarity features across the different algorithms.
However, condition 2 is the more natural one. It allows us to see how the noise of neutral
instances affects the performance of the polarity features.
The following sections describe three sets of experiments. First, we investigate the
performance of the polarity features used together for polarity classification under
condition 1. As before, the word and word+priorpol classifiers provide our baselines. In
the second set of experiments, we explore the performance of different sets of features
for polarity classification, again assuming perfect recognition of the polar instances.
Finally, we experiment with polarity classification using all the polarity features under
condition 2, automatic recognition of the polar instances.
As before, we use the development data to select the parameter settings for each al-
gorithm. The settings for polarity classification are given in Table 14. They were selected
based on the performance of the word+priorpol baseline classifier under condition 2.
8.2.1 Classification Results: Condition 1. The results for polarity classification using all the
polarity features, assuming perfect neutral–polar recognition for step one, are given in
Table 15. For each algorithm, we give the results for the two baseline classifiers, followed
by the results for the classifier trained using all the polarity features. For the metrics
where the polarity features perform statistically better than both baselines (two-sided
t-test, p ≤ 0.05), the results are given in bold.
420
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
Table 14
Algorithm settings for polarity classification.
Algorithm
BoosTexter
TiMBL
Ripper
SVM
Settings
2,000 rounds of boosting
k=1, MVDM distance metric
-!s, -S 0.5
linear kernel
Table 15
Results for polarity classification (step two) using gold-standard polar instances.
Positive
Negative
Both
Acc
Rec
Prec
F
Rec
Prec
F
Rec
Prec
F
BoosTexter
word token baseline
word+priorpol baseline
polarity features
TiMBL
word token baseline
word+priorpol baseline
polarity features
Ripper
word token baseline
word+priorpol baseline
polarity features
SVM
word token baseline
word+priorpol baseline
polarity features
78.7
79.7
83.2
78.5
79.4
82.2
70.0
78.9
83.2
69.9
78.2
81.6
57.7
70.5
76.7
63.3
69.7
75.4
14.5
75.5
77.8
62.4
76.7
74.9
72.8
68.8
74.3
69.2
68.4
73.3
74.5
65.2
73.5
69.6
63.7
71.1
64.4
69.6
75.5
66.1
69.1
74.3
24.3
70.0
75.6
65.8
69.6
72.9
91.5
87.2
89.7
88.6
87.0
88.5
98.3
83.8
89.2
76.0
82.2
88.1
80.8
85.1
87.7
82.5
84.8
87.6
69.7
86.4
87.8
84.1
86.7
86.6
85.8
86.1
88.7
85.4
85.9
88.0
81.6
85.1
88.5
79.9
84.4
87.3
12.9
13.7
11.8
14.1
14.6
18.3
09.1
09.8
09.8
14.1
09.8
09.5
53.6
53.7
54.2
51.0
53.5
34.6
74.4
75.4
74.9
31.2
75.4
77.6
20.8
21.8
19.4
22.1
22.9
23.9
16.2
17.4
17.4
19.4
17.4
16.9
How well do the polarity features perform working all together? For all algorithms,
the polarity classifier using all the features significantly outperforms both baselines
in terms of accuracy, positive F-measure, and negative F-measure. These consistent
improvements in performance across all four algorithms show that these features are
quite useful for polarity classification.
One interesting thing that Table 15 reveals is that negative polarity words are much
more straightforward to recognize than positive polarity words, at least in this corpus.
For the negative class, precisions and recalls for the word+priorpol baseline range from
82.2 to 87.2. For the positive class, precisions and recalls for the word+priorpol baseline
range from 63.7 to 76.7. However, it is with the positive class that polarity features seem
to help the most. With the addition of the polarity features, positive F-measure improves
by 5 points on average; improvements in negative F-measures average only 2.75 points.
8.2.2 Feature Set Evaluation. To evaluate the performance of the various features for
polarity classification, we again perform a series of ablation experiments. As before, we
start with the word+priorpol baseline classifier, add different sets of polarity features,
train new classifiers, and compare the results of the new classifiers to the baseline.
421
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
Table 16
Polarity feature sets for evaluation.
Experiment
Features
NEGATION
POLARITY-MOD modifies polarity, modified by polarity, conjunction polarity
general, negative, positive polarity shifters
SHIFTERS
negated, negated subject
Table 17
Results for polarity feature ablation experiments.
Positive
Negative
Acc
Rec
Prec
F
Rec
Prec
F
+++
++
+
+++
+
+
+++
+
+
+++
+
+
++
+++
+
+++
+
+
– –
+++
–
–
–
–
+++
+
+
+++
+
+
+++
++
+
+++
+++
+
+++
+++
+
+++
+
+
+++
+++
+
+++
+
+
+++
+
+
+++
–
–
+++
+
+
+++
+
+
+
++
+
+++
+
+
–
+
–
+
–
+
+++
+
+
+++
+
+
+++
+
+
+++
+
+
BoosTexter
NEGATION
POLARITY-MOD
SHIFTERS
TiMBL
NEGATION
POLARITY-MOD
SHIFTERS
Ripper
NEGATION
POLARITY-MOD
SHIFTERS
SVM
NEGATION
POLARITY-MOD
SHIFTERS
Increases and decreases for a given metric as compared to the
word+priorpol baseline are indicated by + or –, respectively;
++ or – – indicates the change is significant at the p < 0.1 level;
+++ or – – – indicates significance at the p < 0.05 level.
Table 16 lists the sets of features tested in each experiment, and Table 17 shows the
results of the experiments. Results are reported as they were previously in Section 8.1.2,
with increases and decreases compared to the baseline for a given metric indicated by +
or –, respectively.
Looking at Table 17, we see that all three sets of polarity features help to increase
performance as measured by accuracy and positive and negative F-measures. This is
true for all the classification algorithms. As we might expect, including the negation
features has the most marked effect on the performance of polarity classification, with
statistically significant improvements for most metrics across all the algorithms.9 The
9 Although the negation features give the best performance improvements of the three feature sets, these
classifiers still do not perform as well as the respective all-feature polarity classifiers for each algorithm.
422
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
polarity-modification features also seem to be important for polarity classification,
in particular for disambiguating the positive instances. For all the algorithms except
TiMBL, including the polarity-modification features results in significant improvements
for at least one of the positive metrics. The polarity shifters also help classification, but
they seem to be the weakest of the features: Including them does not result in significant
improvements for any algorithm.
Another question that is interesting to consider is how much the word token feature
contributes to polarity classification, given all the other polarity features. Is it enough
to know the prior polarity of a word, whether it is being negated, and how it is related
to other polarity influencers? To answer this question, we train classifiers using all the
polarity features except for word token. Table 18 gives the results for these classifiers;
for comparison, the results for the all-feature polarity classifiers are also given. Inter-
estingly, excluding the word token feature produces only small changes in the overall
results. The results for BoosTexter and Ripper are slightly lower, and the results for
SVM are practically unchanged. TiMBL actually shows a slight improvement, with the
exception of the both class. This provides further evidence of the strength of the polarity
features. Also, a classifier not tied to actual word tokens may potentially be a more
domain-independent classifier.
8.2.3 Classification Results: Condition 2. The experiments in Section 8.2.1 show that the
polarity features perform well under the ideal condition of perfect recognition of polar
instances. The next question to consider is how well the polarity features perform
under the more natural but less-than-perfect condition of automatic recognition of
polar instances. To investigate this, the polarity classifiers (including the baselines) for
each algorithm in these experiments start with the polar instances identified by the
best performing neutral–polar classifier for that algorithm (from Section 8.1.1). The
results for these experiments are given in Table 19. As before, statistically significant
improvements over both baselines are given in bold.
How well do the polarity features perform in the presence of noise from misclas-
sified neutral instances? Our first observation comes from comparing Table 15 with
Table 19: Polarity classification results are much lower for all classifiers with the noise
of neutral instances. Yet in spite of this, the polarity features still produce classifiers that
Table 18
Results for polarity classification without and with the word token feature.
Acc
Pos F Neg F
Both F
BoosTexter
excluding word token
all polarity features
TiMBL
excluding word token
all polarity features
Ripper
excluding word token
all polarity features
SVM
excluding word token
all polarity features
82.5
83.2
83.2
82.2
82.9
83.2
81.5
81.6
74.9
75.5
75.9
74.3
75.4
75.6
72.9
72.9
88.0
88.7
88.4
88.0
88.3
88.5
87.3
87.3
17.4
19.4
17.3
23.9
17.4
17.4
16.8
16.9
423
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
4
2
4
Table 19
Results for polarity classification (step two) using automatically identified polar instances.
Positive
Negative
Both
Neutral
Acc
R
P
F
R
P
F
R
P
F
R
P
F
BoosTexter
word token
word+priorpol
polarity feats
TiMBL
word token
word+priorpol
polarity feats
Ripper
word token
word+priorpol
polarity feats
SVM
word token
word+priorpol
polarity feats
61.5
63.3
65.9
60.1
61.0
64.4
54.4
51.4
54.8
64.5
62.8
64.1
62.3
70.0
73.6
68.3
73.2
75.3
22.2
24.0
38.0
70.0
89.0
90.8
62.7
57.9
62.2
58.9
53.4
58.6
69.4
71.7
67.2
60.9
51.2
53.0
62.5
63.4
67.4
63.2
61.8
65.9
33.6
35.9
48.5
65.1
65.0
66.9
86.4
81.3
84.9
81.8
80.6
81.1
95.1
97.7
95.5
70.9
88.4
90.4
64.6
71.5
72.3
65.0
69.8
73.0
50.7
48.9
52.7
74.9
69.2
70.1
74.0
76.1
78.1
72.5
74.8
76.9
66.1
65.1
67.9
72.9
77.6
79.0
11.4
12.5
13.4
11.2
12.7
16.9
00.0
00.0
00.0
16.6
11.1
12.7
49.3
47.3
40.7
39.6
41.7
32.7
00.0
00.0
00.0
41.5
48.5
52.3
18.5
19.8
20.2
17.4
19.5
22.3
00.0
00.0
00.0
23.7
18.0
20.4
20.8
30.9
31.0
21.6
23.0
32.1
21.7
09.2
14.5
53.3
02.4
02.2
44.5
47.5
50.6
43.1
44.2
50.0
76.5
75.8
66.8
51.0
58.3
61.4
28.3
37.4
38.4
28.8
30.3
39.1
33.8
16.3
23.8
52.1
04.5
04.3
C
o
m
p
u
t
a
t
i
o
n
a
l
L
i
n
g
u
i
s
t
i
c
s
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
V
o
l
u
m
e
3
5
,
N
u
m
b
e
r
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
outperform the baselines. For three of the four algorithms, the classifier using all the
polarity features has the highest accuracy. For BoosTexter and TiMBL, the improvements
in accuracy over both baselines are significant. Also for all algorithms, using the polarity
features gives the highest positive and negative F-measures.
Because the set of polarity instances being classified by each algorithm is different,
we cannot directly compare the results from one algorithm to the next.
8.3 Two-step versus One-step Recognition of Contextual Polarity
Although the two-step approach to recognizing contextual polarity allows us to focus
our investigation on the performance of features for both neutral–polar classification
and polarity classification, the question remains: How does the two-step approach
compare to recognizing contextual polarity in a single classification step? The results
shown in Table 20 help to answer this question. The first row in Table 20 for each
algorithm shows the combined result for the two stages of classification. For BoosTexter,
TiMBL, and Ripper, this is the combination of results from using all the neutral–polar
features for step one, together with the results from using all of the polarity features for
step two.10 For SVM, this is the combination of results from the word+priorpol baseline
from step one, together with results for using all the polarity features for step two.
Recall that the word+priorpol classifier was the best neutral–polar classifier for SVM
(see Table 11). The second rows for BoosTexter, TiMBL, and Ripper show the results of
a single classifier trained to recognize contextual polarity using all the neutral–polar
and polarity features together. For SVM, the second row shows the results of classifying
the contextual polarity using just the word token feature. This classifier outperformed
all others for SVM. In the table, the best result for each metric for each algorithm is
highlighted in bold.
When comparing the two-step and one-step approaches, contrary to our expecta-
tions, we see that the one-step approach performs about as well or better than the
two-step approach for recognizing contextual polarity. For SVM, the improvement in
accuracy achieved by the two-step approach is significant, but this is not true for
the other algorithms. One fairly consistent difference between the two approaches is
that the two-step approach scores slightly higher for neutral F-measure, and the one-
step approach achieves higher F-measures for the polarity classes. The difference in
negative F-measure is significant for BoosTexter, TiMBL, and Ripper. The exception to
this is SVM. For SVM, the two-step approach achieves significantly higher positive and
negative F-measures.
One last question we consider is how much the neutral–polar features contribute
to the performance of the one-step classifiers. The third line in Table 20 for BoosTexter,
TiMBL, and Ripper gives the results for a one-step classifier trained without the neutral–
polar features. Although the differences are not always large, excluding the neutral–
polar features consistently degrades performance in terms of accuracy and positive,
negative, and neutral F-measures. The drop in negative F-measure is significant for all
three algorithms, the drop in neutral F-measure is significant for BoosTexter and TiMBL,
and the drop in accuracy is significant for TiMBL and Ripper (and for BoosTexter at the
p ≤ 0.1 level).
10 To clarify, Section 8.2.3 only reported results for instances identified as polar in step one. Here, we report
results for all clue instances, including the instances classified as neutral in step one.
425
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
Table 20
Results for contextual polarity classification for both two-step and one-step approaches.
Acc
Pos F Neg F
Both F Neutral F
BoosTexter
two-step
one-step all feats
one-step – neut-pol feats
TiMBL
two-step
one-step all feats
one-step – neut-pol feats
Ripper
two-step
one-step all feats
one-step – neut-pol feats
SVM
two-step
one-step
74.5
74.3
73.3
74.1
73.9
72.5
68.9
69.5
67.0
73.1
71.6
47.1
49.1
48.4
47.6
49.6
49.5
26.6
30.2
28.9
46.6
43.4
57.5
59.8
58.7
56.4
59.3
56.9
49.0
52.8
33.0
58.0
51.7
12.9
14.1
16.3
13.8
15.2
21.6
00.0
14.0
11.4
13.0
17.0
83.4
82.9
81.9
83.2
82.6
81.4
80.1
79.4
78.6
82.1
81.6
The modest drop in performance that we see when excluding the neutral–polar
features in the one-step approach seems to suggest that discriminating between neutral
and polar instances is helpful but not necessarily crucial. However, consider Figure 3.
In this figure, we show the F-measures for the positive, negative, and both classes for
the BoosTexter polarity classifier that uses the gold-standard neutral/polar instances
(from Table 15) and for the BoosTexter one-step polarity classifier that uses all features
(from Table 20). Plotting the same sets of results for the other three algorithms produces
very similar figures. The difference when the classifiers have to contend with the noise
from neutral instances is dramatic. Although Table 20 shows that there is room for
improvement across all the contextual polarity classes, Figure 3 shows us that perhaps
the best way to achieve these improvements is to improve the ability to discriminate the
neutral class from the others.
Figure 3
Chart showing the positive, negative, and both class F-measures for the BoosTexter classifier that
uses the gold-standard neutral/polar classes and the BoosTexter one-step classifier that uses all
the features.
426
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
9. Related Work
9.1 Phrase-Level Sentiment Analysis
Other researchers who have worked on classifying the contextual polarity of sentiment
expressions are Yi et al. (2003), Popescu and Etzioni (2005), and Suzuki, Takamura, and
Okumura (2006). Yi et al. use a lexicon and manually developed patterns to classify
contextual polarity. Their patterns are high-quality, yielding quite high precision over
the set of expressions that they evaluate. Popescu and Etzioni use an unsupervised clas-
sification technique called relaxation labeling (Hummel and Zucker 1983) to recognize
the contextual polarity of words that are at the heads of select opinion phrases. They
take an iterative approach, using relaxation labeling first to determine the contextual
polarities of the words, then again to label the polarities of the words with respect to
their targets. A third stage of relaxation labeling then is used to assign final polarities to
the words, taking into consideration the presence of other polarity terms and negation.
As we do, Popescu and Etzioni use features that represent conjunctions and dependency
relations between polarity words. Suzuki et al. use a bootstrapping approach to classify
the polarity of tuples of adjectives and their target nouns in Japanese blogs. Included
in the features that they use are the words that modify the adjectives and the word that
the adjective modifies. They consider the effect of a single negation term, the Japanese
equivalent of not.
Our work in recognizing contextual polarity differs from this research on
expression-level sentiment analysis in several ways. First, the set of expressions they
evaluate is limited either to those that target specific items of interest, such as products
and product features, or to tuples of adjectives and nouns. In contrast, we seek to classify
the contextual polarity of all instances of words from a large lexicon of subjectivity clues
that appear in the corpus. Included in the lexicon are not only adjectives, but nouns,
verbs, adverbs, and even modals.
Our work also differs from other research in the variety of features that we use. As
other researchers do, we consider negation and the words that directly modify or are
modified by the expression being classified. However, with negation, we have features
for both local and longer-distance types of negation, and we take care to count negation
terms only when they are actually being used to negate, excluding, for example, nega-
tion terms when they are used in phrases that intensify (e.g., not only). We also include
contextual features to capture the presence of other clue instances in the surrounding
sentences, and features that represent the reliability of clues from the lexicon.
Finally, a unique aspect of the work presented in this article is the evaluation of
different features for recognizing contextual polarity. We first presented the features
explored in this research in Wilson, Wiebe, and Hoffman (2005), but this work signif-
icantly extends that initial evaluation. We explore the performance of features across
different learning algorithms, and we evaluate not only features for discriminating
between positive and negative polarity, but features for determining when a word is
or is not expressing a sentiment in the first place (neutral in context). This is also the
first work to evaluate the effect of neutral instances on the performance of features for
discriminating between positive and negative contextual polarity.
9.2 Other Research in Sentiment Analysis
Recognizing contextual polarity is just one facet of the research in automatic senti-
ment analysis. Research ranges from work on learning the prior polarity (semantic
427
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
orientation) of words and phrases (e.g., Hatzivassiloglou and McKeown 1997; Kamps
and Marx 2002; Turney and Littman 2003; Hu and Liu 2004; Kim and Hovy 2004; Esuli
and Sebastiani 2005; Takamura, Inui, and Okumura 2005; Popescu and Etzioni 2005;
Andreevskaia and Bergler 2006; Esuli and Sebastiani 2006a; Kanayama and Nasukawa
2006) to characterizing the sentiment of documents, such as recognizing inflammatory
messages (Spertus 1997), tracking sentiment over time in online discussions (Tong
2001), and classifying the sentiment of online messages (e.g., Das and Chen 2001;
Koppel and Schler 2006), customer feedback data (Gamon 2004), or product and movie
reviews (e.g., Turney 2002; Pang, Lee, and Vaithyanathan 2002; Dave, Lawrence, and
Pennock 2003; Beineke, Hastie, and Vaithyanathan 2004; Mullen and Collier 2004; Bai,
Padman, and Airoldi 2005; Whitelaw, Garg, and Argamon 2005; Kennedy and Inkpen
2006; Koppel and Schler 2006).
Identifying prior polarity is a different task than recognizing contextual polarity,
although the two tasks are complementary. The goal of identifying prior polarity is
to automatically acquire the polarity of words or phrases for listing in a lexicon. Our
work on recognizing contextual polarity begins with a lexicon of words with established
prior polarities and then disambiguates in the corpus the polarity being expressed
by the phrases in which instances of those words appear. To make the relationship
between that task and ours clearer, some word lists that are used to evaluate methods for
recognizing prior polarity (positive and negative word lists from the General Inquirer
[Stone et al. 1966] and lists of positive and negative adjectives created for evaluation by
Hatzivassiloglou and McKeown [1997]) are included in the prior-polarity lexicon used
in our experiments.
For the most part, the features explored in this work differ from the ones used to
identify prior polarity with just a few exceptions. Using a feature to capture conjunc-
tions between clue instances was motivated in part by the work of Hatzivassiloglou and
McKeown (1997). They use constraints on the co-occurrence in conjunctions of words
with similar or opposite polarity to predict the prior polarity of adjectives. Esuli and
Sebastiani (2005) consider negation in some of their experiments involving WordNet
glosses. Takamura et al. (2005) use negation words and phrases, including phrases such
as lack of that are members in our lists of polarity shifters, and conjunctive expressions
that they collect from corpora.
Esuli and Sebastiani (2006a) is the only work in prior-polarity identification to
include a neutral (objective) category and to consider a three-way classification between
positive, negative, and neutral words. Although identifying prior polarity is a different
task, they report a finding similar to ours, namely, that accuracy is lower when neutral
words are included.
Some research in sentiment analysis classifies the sentiments of sentences. Morinaga
et al. (2002), Yu and Hatzivassiloglou (2003), Kim and Hovy (2004), Hu and Liu (2004),
and Grefenstette et al. (2004)11 all begin by first creating prior-polarity lexicons. Yu and
Hatzivassiloglou then assign a sentiment to a sentence by averaging the prior semantic
orientations of instances of lexicon words in the sentence. Thus, they do not identify the
contextual polarity of individual phrases containing clue instances, which is the focus
of this work. Morinaga et al. only consider the positive or negative clue instance in
each sentence that is closest to some target reference; Kim and Hovy, Hu and Liu, and
Grefenstette et al. multiply or count the prior polarities of clue instances in the sentence.
11 In Grefenstette et al. (2004), the units that are classified are fixed windows around named entities rather
than sentences.
428
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
These researchers also consider local negation to reverse polarity, with Morinaga et al.
also taking into account the negating effect of words like insufficient. However, they
do not use the other types of features that we consider in our experiments. Kaji and
Kitsuregawa (2006) take a different approach to recognizing positive and negative
sentences. They bootstrap from information easily obtained in “Pro” and “Con”
HTML tables and lists, and from one high-precision linguistic pattern, to automatically
construct a large corpus of positive and negative sentences. They then use this corpus to
train a naive Bayes sentence classifier. In contrast to our work, sentiment classification
in all of this research is restricted to identifying only positive and negative sentences
(excluding our both and neutral categories). In addition, only one sentiment is assigned
per sentence; our system assigns contextual polarity to individual expressions, which
would allow for a sentence to be assigned to multiple sentiment categories. As we saw
when exploring the contextual polarity annotations, it is not uncommon for sentences
to contain more than one sentiment expression.
Classifying the sentiment of documents is a very different task than recognizing
the contextual polarity of words and phrases. However, some researchers have re-
ported findings about document-level classification that are similar to our findings
about phrase-level classification. Bai et al. (2005) argue that dependencies among key
sentiment terms are important for classifying document sentiment. Similarly, we show
that features for capturing when clue instances modify each other are important for
phrase-level classification, in particular, for identifying positive expressions. Gamon
(2004) achieves his best results for document classification using a wide variety of
features, including rich linguistic features, such as features that capture constituent
structure, features that combine part-of-speech and semantic relations (e.g., sentence
subject or negated context), and features that capture tense information. We also achieve
our best results for phrase-level classification using a wide variety of features, many
of which are linguistically rich. Kennedy and Inkpen (2006) report consistently higher
results for document sentiment classification when select polarity influencers, including
negators and intensifiers, are included.12 Koppel and Schler (2006) demonstrate the
importance of neutral examples for document-level classification. In this work, we show
that being able to correctly identify neutral instances is also very important for phrase-
level sentiment analysis.
10. Conclusions and Future Work
Being able to determine automatically the contextual polarity of words and phrases is
an important problem in sentiment analysis. In the research presented in this article, we
tackle this problem and show that it is much more complex than simply determining
whether a word or phrase is positive or negative. In our analysis of a corpus with
annotations of subjective expressions and their contextual polarity, we find that positive
and negative words from a lexicon are used in neutral contexts much more often than
they are used in expressions of the opposite polarity. The importance of identifying
12 Das and Chen (2001), Pang, Lee, and Vaithyanathan (2002), and Dave, Lawrence, and Pennock (2003) also
represent negation. In their experiments, words which follow a negation term are tagged with a negation
marker and then treated as new words. Pang, Lee and Vaithyanathan report that representing negation in
this way slightly helps their results, whereas Dave, Lawrence, and Pennock report a slightly detrimental
effect. Whitelaw, Garg, and Argamon (2005) also represent negation terms and intensifiers. However, in
their experiments, the effect of negation is not separately evaluated, and intensifiers are not found to be
beneficial.
429
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
when contextual polarity is neutral is further revealed in our classification experiments:
When neutral instances are excluded, the performance of features for distinguishing
between positive and negative polarity greatly improves.
A focus of this research is on understanding which features are important for
recognizing contextual polarity. We experiment with a wide variety of linguistically
motivated features, and we evaluate the performance of these features using several
different machine learning algorithms. Features for distinguishing between neutral and
polar instances are evaluated, as well as features for distinguishing between positive
and negative contextual polarity. For classifying neutral and polar instances, we find
that, although some features produce significant improvements over the baseline in
terms of polar or neutral recall or precision, it is the combination of features together
that is needed to achieve significant improvements in accuracy. For classifying positive
and negative contextual polarity, features for capturing negation prove to be the most
important. However, we find that features that also perform well are those that cap-
ture when a word is (or is not) modifying or being modified by other polarity terms.
This suggests that identifying features that represent more complex interdependencies
between polarity clues will be an important avenue for future research.
Another direction for future work will be to expand our lexicon using existing
techniques for acquiring the prior polarity of words and phrases. It follows that a larger
lexicon will have a greater coverage of sentiment expressions. However, expanding the
lexicon with automatically acquired prior-polarity tags may result in an even greater
proportion of neutral instances to contend with. Given the degradation in performance
created by the neutral instances, whether expanding the lexicon automatically will
result in improved performance for recognizing contextual polarity is an empirical
question.
Finally, the overall goal of our research is to use phrase-level sentiment analysis in
higher-level NLP tasks, such as opinion question answering and summarization.
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
Acknowledgments
We would like to thank the anonymous
reviewers for their valuable comments and
suggestions. This work was supported in
part by an Andrew Mellow Predoctoral
Fellowship, by the NSF under grant
IIS-0208798, by the Advanced Research and
Development Activity (ARDA), and by the
European IST Programme through the
AMIDA Integrated Project FP6-0033812.
References
Andreevskaia, Alina and Sabine Bergler.
2006. Mining WordNet for fuzzy
sentiment: Sentiment tag extraction from
WordNet glosses. In Proceedings of the 11th
Meeting of the European Chapter of the
Association for Computational Linguistics
(EACL-2006), pages 209–216, Trento.
Bai, Xue, Rema Padman, and Edoardo
Airoldi. 2005. On learning parsimonious
models for extracting consumer opinions.
In Proceedings of the 38th Annual Hawaii
International Conference on System
430
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Sciences (HICSS’05) - Track 3, page 75.2,
Waikoloa, HI.
Banfield, Ann. 1982. Unspeakable Sentences.
Routledge and Kegan Paul, Boston.
Beineke, Philip, Trevor Hastie, and
Shivakumar Vaithyanathan. 2004. The
sentimental factor: Improving review
classification via human-provided
information. In Proceedings of the 42nd
Annual Meeting of the Association for
Computational Linguistics (ACL-04),
pages 263–270, Barcelona.
Cohen, William W. 1996. Learning trees
and rules with set-valued features. In
Proceedings of the 13th National Conference
on Artificial Intelligence, pages 709–717,
Portland, OR.
Collins, Michael. 1997. Three generative,
lexicalised models for statistical parsing.
In Proceedings of the 35th Annual Meeting of
the Association for Computational Linguistics
(ACL-97), pages 16–23, Madrid.
Daelemans, Walter, V´eronique Hoste,
Fien De Meulder, and Bart Naudts.
2003a. Combined optimization of feature
selection and algorithm parameter
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
interaction in machine learning of
language. In Proceedings of the 14th
European Conference on Machine Learning
(ECML-2003), pages 84–95,
Cavtat-Dubrovnik.
Daelemans, Walter, Jakub Zavrel, Ko van der
Sloot, and Antal van den Bosch. 2003b.
TiMBL: Tilburg Memory Based Learner,
version 5.0 Reference Guide. ILK Technical
Report 03-10, Induction of Linguistic
Knowledge Research Group, Tilburg
University. Available at http://ilk.uvt.
nl/downloads/pub/papers/ilk0310.pdf.
Das, Sanjiv Ranjan and Mike Y. Chen. 2001.
Yahoo! for Amazon: Sentiment parsing
from small talk on the Web. In Proceedings
of the August 2001 Meeting of the European
Finance Association (EFA), Barcelona,
Spain. Available at http://ssrn.com/
abstract=276189.
Dave, Kushal, Steve Lawrence, and David M.
Pennock. 2003. Mining the peanut
gallery: Opinion extraction and
semantic classification of product
reviews. In Proceedings of the 12th
International World Wide Web Conference
(WWW2003), Budapest. Available at
http://www2003.org.
Esuli, Andrea and Fabrizio Sebastiani. 2005.
Determining the semantic orientation of
terms through gloss analysis. In
Proceedings of ACM SIGIR Conference on
Information and Knowledge Management
(CIKM-05), pages 617–624, Bremen.
Esuli, Andrea and Fabrizio Sebastiani. 2006a.
Determining term subjectivity and term
orientation for opinion mining. In
Proceedings the 11th Meeting of the European
Chapter of the Association for Computational
Linguistics (EACL-2006), pages 193–200,
Trento.
Esuli, Andrea and Fabrizio Sebastiani. 2006b.
SentiWordNet: A publicly available lexical
resource for opinion mining. In Proceedings
of LREC-06, the 5th Conference on Language
Resources and Evaluation, pages 417–422,
Genoa.
Gamon, Michael. 2004. Sentiment
classification on customer feedback data:
Noisy data, large feature vectors, and the
role of linguistic analysis. In Proceedings
of the 20th International Conference on
Computational Linguistics (COLING-2004),
pages 611–617, Geneva.
Grefenstette, Gregory, Yan Qu, James G.
Shanahan, and David A. Evans. 2004.
Coupling niche browsers and affect
analysis for an opinion mining application.
In Proceedings of the Conference Recherche
d’Information Assistee par Ordinateur
(RIAO-2004), pages 186–194, Avignon.
Hatzivassiloglou, Vasileios and Kathy
McKeown. 1997. Predicting the semantic
orientation of adjectives. In Proceedings of
the 35th Annual Meeting of the Association
for Computational Linguistics (ACL-97),
pages 174–181, Madrid.
Hoste, V´eronique. 2005. Optimization Issues in
Machine Learning of Coreference Resolution.
Ph.D. thesis, Language Technology Group,
University of Antwerp.
Hu, Minqing and Bing Liu. 2004. Mining
and summarizing customer reviews. In
Proceedings of ACM SIGKDD Conference
on Knowledge Discovery and Data Mining
2004 (KDD-2004), pages 168–177,
Seattle, WA.
Hummel, Robert A. and Steven W. Zucker.
1983. On the foundations of relaxation
labeling processes. IEEE Transactions on
Pattern Analysis and Machine Intelligence
(PAMI), 5(3):167–187.
Joachims, Thorsten. 1999. Making large-scale
SVM learning practical. In B. Scholkopf,
C. Burgess, and A. Smola, editors,
Advances in Kernel Methods – Support Vector
Learning, pages 169–184. MIT Press,
Cambridge, MA.
Kaji, Nobuhiro and Masaru Kitsuregawa.
2006. Automatic construction of
polarity-tagged corpus from HTML
documents. In Proceedings of the
COLING/ACL 2006 Main Conference
Poster Sessions, pages 452–459, Sydney.
Kamps, Jaap and Maarten Marx. 2002.
Words with attitude. In Proceedings of the
1st International Conference on Global
WordNet, pages 332–341, Mysore.
Kanayama, Hiroshi and Tetsuya Nasukawa.
2006. Fully automatic lexicon expansion
for domain-oriented sentiment analysis.
In Proceedings of the Conference on
Empirical Methods in Natural Language
Processing (EMNLP-2006), pages 355–363,
Sydney.
Kennedy, Alistair and Diana Inkpen. 2006.
Sentiment classification of movie reviews
using contextual valence shifters.
Computational Intelligence, 22(2):110–125.
Kim, Soo-Min and Eduard Hovy. 2004.
Determining the sentiment of opinions.
In Proceedings of the 20th International
Conference on Computational Linguistics
(COLING-2004), pages 1267–1373, Geneva.
Koppel, Moshe and Jonathan Schler. 2006.
The importance of neutral examples for
learning sentiment. Computational
Intelligence, 22(2):100–109.
431
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Computational Linguistics
Volume 35, Number 3
Maybury, Mark T., editor. 2004. New
Directions in Question Answering. American
Association for Artificial Intelligence,
Menlo Park, CA.
Morinaga, Satoshi, Kenji Yamanishi, Kenji
Tateishi, and Toshikazu Fukushima. 2002.
Mining product reputations on the Web.
In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining (KDD-2002),
pages 341–349, Edmonton.
Mullen, Tony and Nigel Collier. 2004.
Sentiment analysis using support
vector machines with diverse
information sources. In Proceedings
of the Conference on Empirical Methods
in Natural Language Processing
(EMNLP-2004), pages 412–418,
Barcelona.
Nasukawa, Tetsuya and Jeonghee Yi.
2003. Sentiment analysis: Capturing
favorability using natural language
processing. In Proceedings of the 2nd
International Conference on Knowledge
Capture (K-CAP 2003), pages 70–77,
Sanibel Island, FL.
Pang, Bo, Lillian Lee, and Shivakumar
Vaithyanathan. 2002. Thumbs up?
Sentiment classification using machine
learning techniques. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing (EMNLP-2002),
pages 79–86, Philadelphia, PA.
Polanyi, Livia and Annie Zaenen. 2004.
Contextual valence shifters. In Working
Notes of the AAAI Spring Symposium on
Exploring Attitude and Affect in Text:
Theories and Applications, pages 106–111,
The AAAI Press, Menlo Park, CA.
Popescu, Ana-Maria and Oren Etzioni.
2005. Extracting product features and
opinions from reviews. In Proceedings
of the Human Language Technologies
Conference/Conference on Empirical
Methods in Natural Language Processing
(HLT/EMNLP-2005), pages 339–346,
Vancouver.
Quirk, Randolph, Sidney Greenbaum,
Geoffry Leech, and Jan Svartvik. 1985.
A Comprehensive Grammar of the English
Language. Longman, New York.
Riloff, Ellen and Janyce Wiebe. 2003.
Learning extraction patterns for subjective
expressions. In Proceedings of the Conference
on Empirical Methods in Natural Language
Processing (EMNLP-2003), pages 105–112,
Sapporo.
Schapire, Robert E. and Yoram Singer. 2000.
BoosTexter: A boosting-based system for
432
text categorization. Machine Learning,
39(2/3):135–168.
Spertus, Ellen. 1997. Smokey: Automatic
recognition of hostile messages. In
Proceedings of the 8th Annual Conference
on Innovative Applications of Artificial
Intelligence (IAAI-97), pages 1058–1065,
Providence, RI.
Stone, Philip J., Dexter C. Dunphy,
Marshall S. Smith, and Daniel M. Ogilvie.
1966. The General Inquirer: A Computer
Approach to Content Analysis. MIT Press,
Cambridge, MA.
Stoyanov, Veselin, Claire Cardie, and
Janyce Wiebe. 2005. Multi-perspective
question answering using the OpQA
corpus. In Proceedings of the Human
Language Technologies Conference/
Conference on Empirical Methods in Natural
Language Processing (HLT/EMNLP-2005),
pages 923–930, Vancouver.
Suzuki, Yasuhiro, Hiroya Takamura, and
Manabu Okumura. 2006. Application of
semi-supervised learning to evaluative
expression classification. In Proceedings of
the 7th International Conference on Intelligent
Text Processing and Computational
Linguistics (CICLing-2006), pages 502–513,
Mexico City.
Takamura, Hiroya, Takashi Inui, and
Manabu Okumura. 2005. Extracting
emotional polarity of words using spin
model. In Proceedings of the 43rd Annual
Meeting of the Association for Computational
Linguistics (ACL-05), pages 133–140,
Ann Arbor, MI.
Tong, Richard. 2001. An operational
system for detecting and tracking
opinions in online discussions. In
Working Notes of the SIGIR Workshop on
Operational Text Classification, pages 1–6,
New Orleans, LA.
Turney, Peter. 2002. Thumbs up or thumbs
down? Semantic orientation applied to
unsupervised classification of reviews.
In Proceedings of the 40th Annual Meeting
of the Association for Computational
Linguistics (ACL-02), pages 417–424,
Philadelphia, PA.
Turney, Peter and Michael L. Littman. 2003.
Measuring praise and criticism: Inference
of semantic orientation from association.
ACM Transactions on Information Systems
(TOIS), 21(4):315–346.
Whitelaw, Casey, Navendu Garg, and
Shlomo Argamon. 2005. Using appraisal
groups for sentiment analysis. In
Proceedings of the 14th ACM International
Conference on Information and Knowledge
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Wilson, Wiebe, and Hoffmann
Recognizing Contextual Polarity
Management (CIKM-2005), pages 625–631,
Bremen.
Wiebe, Janyce. 1994. Tracking point of view
in narrative. Computational Linguistics,
20(2):233–287.
Wiebe, Janyce, Rebecca Bruce, and
Thomas O’Hara. 1999. Development
and use of a gold standard data set
for subjectivity classifications. In
Proceedings of the 37th Annual Meeting
of the Association for Computational
Linguistics (ACL-99), pages 246–253,
College Park, MD.
Wiebe, Janyce and Rada Mihalcea.
2006. Word sense and subjectivity.
In Proceedings of the 21st International
Conference on Computational Linguistics
and 44th Annual Meeting of the
Association for Computational Linguistics,
pages 1065–1072, Sydney.
Wiebe, Janyce and Ellen Riloff. 2005.
Creating subjective and objective sentence
classifiers from unannotated texts. In
Proceedings of the 6th International
Conference on Intelligent Text Processing and
Computational Linguistics (CICLing-2005),
pages 486–497, Mexico City.
Wiebe, Janyce, Theresa Wilson, and Claire
Cardie. 2005. Annotating expressions
of opinions and emotions in language.
Language Resources and Evaluation
(formerly Computers and the Humanities),
39(2/3):164–210.
Wilson, Theresa, Janyce Wiebe, and Paul
Hoffmann. 2005. Recognizing contextual
polarity in phrase-level sentiment
analysis. In Proceedings of the Human
Language Technologies Conference/
Conference on Empirical Methods in Natural
Language Processing (HLT/EMNLP-2005),
pages 347–354, Vancouver.
Xia, Fei and Martha Palmer. 2001.
Converting dependency structures to
phrase structures. In Proceedings of the
Human Language Technology Conference
(HLT-2001), pages 1–5, San Diego, CA.
Yi, Jeonghee, Tetsuya Nasukawa, Razvan
Bunescu, and Wayne Niblack. 2003.
Sentiment analyzer: Extracting sentiments
about a given topic using natural language
processing techniques. In Proceedings of the
3rd IEEE International Conference on Data
Mining (ICDM’03), pages 427–434,
Melbourne, FL.
Yu, Hong and Vasileios Hatzivassiloglou.
2003. Towards answering opinion
questions: Separating facts from opinions
and identifying the polarity of opinion
sentences. In Proceedings of the Conference
on Empirical Methods in Natural Language
Processing (EMNLP-2003), pages 129–136,
Sapporo.
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
433
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
c
o
l
i
/
l
a
r
t
i
c
e
-
p
d
f
/
/
/
/
3
5
3
3
9
9
1
7
9
8
6
3
8
/
c
o
l
i
.
0
8
-
0
1
2
-
r
1
-
0
6
-
9
0
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
7
S
e
p
e
m
b
e
r
2
0
2
3
Download pdf