INTENSIVE COLLEGE COUNSELING AND
THE ENROLLMENT AND PERSISTENCE
OF LOW-INCOME STUDENTS
Benjamin Castleman
Curry School of Education
University of Virginia
Charlottesville, VA 22904
castleman@virginia.edu
Joshua Goodman
(corresponding author)
Kennedy School of
Government
Harvard University
Cambridge, MA 02138
joshua_goodman@hks
.harvard.edu
Abstract
Though counseling is one commonly pursued intervention to im-
prove college enrollment and completion for disadvantaged stu-
dents, there is relatively little causal evidence on its efficacy. We
use a regression discontinuity design to study the impact of in-
tensive college counseling provided by a Massachusetts program
to college-seeking, low-income students that admits applicants
partly on the basis of a minimum grade point average require-
ment. Counseling shifts enrollment toward four-year colleges that
are less expensive and have higher graduation rates than alterna-
tives students would otherwise choose. Counseling also improves
persistence through at least the second year of college, suggesting
a potential to increase the degree completion rates of disadvan-
taged students.
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
f
/
e
d
u
e
d
p
a
r
t
i
c
e
–
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
f
.
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
19
doi:10.1162/EDFP_a_00204
© 2017 Association for Education Finance and Policy
Intensive College Counseling, Enrollment, and Persistence
I N T RO D U C T I O N
1 .
Although college enrollment among low-income students has increased steadily over
the last decade, the share of students from the lowest-income families that enroll in
college continues to lag considerably behind college entry rates among the highest-
income students (Baum, Ma, and Payea 2013). Furthermore, gaps in college completion
by family income have only widened over time; among students who graduated high
school in the late 1990s and early 2000s, 54 percent of students from the highest-
income quartile had earned a bachelor’s degree by age 25 compared with only 9 percent
of students from the lowest-income quartile (Bailey and Dynarski 2011).
Despite substantial economic returns associated with completing college—
especially for low-income students—there are various financial and informational bar-
riers that may prevent economically disadvantaged students from accessing higher
education at all, or from selecting institutions that are well matched to their abilities
and circumstances. Lower-income students and their families tend to overstate the net
costs of going to college, may have difficulty identifying the full set of colleges and
universities to which they would be academically admissible, and may not understand
the variation in college quality or affordability among different higher education insti-
tutions (Horn, Chen, and Chapman 2003; Avery and Kane 2004; Grodsky and Jones
2007; Hoxby and Avery 2013; Hoxby and Turner 2013). Students may also be uncertain
about where they can access professional assistance with college or financial aid appli-
cations, and as a result may forego completing these applications entirely or may miss
out on key deadlines (Bettinger et al. 2012; Hoxby and Turner 2013; Castleman and Page
2016).
Policy interventions to ameliorate socioeconomic inequalities in college entry and
success have historically focused on increasing college access among students from
economically disadvantaged backgrounds. The earnings premia associated with col-
lege primarily accrue, however, not based on whether students have completed some
college but rather based on whether they earn a degree (Baum, Ma, and Payea 2013).
This relationship between earnings and degree attainment, combined with growing
concerns about loan debt that students accumulate in order to pursue higher educa-
tion, has prompted heightened focus on whether students are attending institutions
where they are well positioned for success. Recent research suggests that students who
attend higher-quality institutions, as measured by institutional characteristics like six-
year graduation rates, are more likely to persist in college and earn a degree (Hoxby and
Turner 2013; Cohodes and Goodman 2014; Goodman, Hurwitz, and Smith 2017). At the
same time, as many as half of low-income students neither apply to nor attend the qual-
ity of institution at which they appear admissible based on their academic credentials
(Bowen, Chingos, and McPherson 2009; Hoxby and Avery 2013; Smith, Pender, and
Howell 2013).
A more recent set of policy interventions has emerged to: (1) guide students
to choose colleges where they have a good probability of earning a degree without
incurring excessive debt, and (2) provide ongoing support to students once they
have matriculated in college. One example of these policy interventions is to provide
high-achieving, low-income students with customized information about their postsec-
ondary options, which can result in students attending and persisting at higher-quality
institutions (Hoxby and Turner 2013). Although this type of low-touch, informational
20
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
/
f
e
d
u
e
d
p
a
r
t
i
c
e
–
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
.
f
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
Benjamin Castleman and Joshua Goodman
intervention has received considerable attention and interest, many communities
rely on more intensive college advising models to improve both overall college access
and choice among low-income students. These interventions are typically run by
community-based nonprofit organizations, and provide individualized guidance to
students throughout the college search, application, and financial aid processes.
Though community-based college advising programs have existed for decades,
there is relatively little causal evidence documenting their impact on important stu-
dent outcomes, including the quality and affordability of the institution at which
students enroll and whether they persist and succeed in college. Existing research
evidence is mixed. Recent pilot experiments suggest that intensive college advising
can substantially increase enrollment at four-year institutions, though these studies
have not followed students longitudinally to investigate whether the advising con-
tributes to improved persistence and success (Avery 2010, 2013). Similarly, providing
students with intensive peer mentoring during the second half of their senior year can
substantially increase the share of students who enroll and persist in college (Carrell
and Sacerdote 2013). An experimental evaluation of the federally funded Upward
Bound program failed, however, to find any improvement in students’ postsecondary
outcomes (Seftor, Mamun, and Schirm 2009). Hurwitz and Howell (2014) exploit
maximum student–counselor ratios to generate regression discontinuity estimates
showing that additional high school counselors increase four-year college enrollment
rates, though their estimates are somewhat imprecise.1
Additional rigorous evidence on the efficacy of intensive college advising programs
would be of considerable value to researchers and policy makers. Although these pro-
grams cost much more than low-cost informational interventions, they may be more
effective at improving postsecondary pathways for a more academically mainstream
population of students. And to the extent they contribute to meaningful increases in
degree attainment, the long-term benefits may justify sizeable upfront expenditures.
To address this gap in the literature, we evaluate the impact of an intensive college
advising program—called Bottom Line—on low-income students’ college enrollment
and persistence. Bottom Line, which operates programs in Boston and Worcester,
Massachusetts, provides advising throughout the senior year of high school. Its ad-
visors meet individually with students to develop lists of well-matched colleges and
universities to which they can apply. Advisors help students complete their college and
financial aid applications and, once students have received acceptances, assist students
in choosing which college to attend.
A somewhat unique feature of the Bottom Line model is its emphasis on encourag-
ing students to apply to and attend a set of twenty or so target colleges and universities.
Bottom Line has identified these schools as institutions where students have a similar
probability of graduating as at other commonly attended institutions, while facing
lower average net costs without incurring excessive loan debt. For instance, one of the
target institutions, Framingham State University, a public four-year university, has a 51
percent six-year graduation rate and an average net price of $17,552. For students who 1. School counselors may also have impacts prior to high school. Carrell and Hoekstra (2014), for example, find that the random addition of a graduate student counselor intern in elementary schools improves boys’ test scores and behavior. Reback (2010) finds that additional elementary school counselors improve behavior but not test scores. l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . f / / e d u e d p a r t i c e – p d l f / / / / / 1 3 1 1 9 1 6 9 2 0 2 6 e d p _ a _ 0 0 2 0 4 p d . f f b y g u e s t t o n 0 8 S e p e m b e r 2 0 2 3 21 Intensive College Counseling, Enrollment, and Persistence enroll at one of the target institutions, Bottom Line continues to provide individualized, campus-based support for up to six years following high school. Bottom Line also discourages students from attending institutions where prior cohorts of students have either struggled to graduate or have accumulated substantial debt. An example of a discouraged institution is Curry College, a private four-year university where the graduation rate is 44 percent and the average net price is $30,561.
Bottom Line thus strives to affect not only whether students enroll in college but where
they enroll as well.
We exploit the fact that Bottom Line admits applicants partly on the basis of a mini-
mum grade point average (GPA) requirement, a requirement not extensively publicized
by the organization and which empirical evidence suggests students are not aware of.
We implement a regression discontinuity design comparing students just above and be-
low this threshold and find that counseling successfully shifts enrollment toward the
four-year colleges encouraged by Bottom Line, which are largely public and substan-
tially less expensive than alternatives students would otherwise choose. We also find ev-
idence that counseling improves persistence through at least the second year of college,
suggesting potential to increase the degree completion rates of disadvantaged students.
We organize the remainder of the paper as follows. In section 2, we discuss Bottom
Line and its college counseling programs. In section 3, we describe our data and empiri-
cal strategy. In section 4, we present our results. In section 5, we conclude with a discus-
sion of these findings and their implications for policy, practice, and further research.
2 . BOT TO M L I N E
Bottom Line was founded in Boston, Massachusetts, in 1997 and provides support to
students who attend a variety of public and charter high schools in Boston and Worces-
ter.2 It offers two types of services: an Access Program that helps students enroll in
college and a Success Program that helps students persist in commonly attended re-
gional colleges. Students apply to the Access Program during the second half of their
junior year of high school. Bottom Line works extensively with schools and community-
based organizations in each city to promote the program and to encourage students to
apply. Bottom Line collects a substantial amount of self-reported academic and demo-
graphic information from students, but admissions decisions to the Access program
are based primarily on students’ family income, first-generation college-going status,
and cumulative GPA as of junior year in high school.
Once students complete the initial Bottom Line application, Bottom Line staff re-
view the applications and determine whether, based on students’ self-reported informa-
tion, they appear to meet the family income and GPA requirements for admission to the
program. Bottom Line targets students who make less than 200 percent of the federal
poverty guidelines and whose high school GPA is 2.5 or higher. The latter requirement
is to ensure that students are academically ready for college-level work. Students who
appear to meet these thresholds are invited to bring copies of their parents’ tax returns
and their high school transcripts to verify their income and GPA. Upon confirmation
of eligibility, Bottom Line officially admits students to the program.
2. Bottom Line has also begun more recent operations in New York City and Chicago.
22
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
f
/
e
d
u
e
d
p
a
r
t
i
c
e
–
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
.
f
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
Benjamin Castleman and Joshua Goodman
Bottom Line starts working with students admitted to the Access program between
the end of their junior year and the start of their senior year of high school. Each stu-
dent is assigned to a counselor employed full-time by Bottom Line and, by senior year,
meets with that counselor for an hour every two to three weeks during the application
season. These meetings take place outside of school at the Bottom Line offices. Bottom
Line advisors do not directly collaborate with students’ school counselors, but do in-
teract with students’ parents as needed—for example, around financial aid forms. The
counselors help seniors navigate the college application process by assisting them with
creating lists of potential schools, writing essays, completing applications, applying for
financial aid, searching for scholarships, resolving any problems that arise and, finally,
selecting a suitable college.
What differentiates Bottom Line from school-based college counseling and from
other programs in the community is its intensive focus on college choice and
affordability—helping students find affordable colleges where they can succeed, in part
by encouraging students to consider colleges and universities where prior cohorts have
been successful. Much of Bottom Line advisors’ time with students during the fall
semester is spent working on college list formation. Advisors actively work with stu-
dents to identify schools where they appear to be a good academic match based on
their high school record and where they are likely to face manageable costs net of fi-
nancial aid they receive. In the spring semester Bottom Line advisors help students
complete financial aid applications and actively work with students to interpret finan-
cial aid award letters they receive from colleges to which they have been admitted, with
the goal of helping students make informed financial choices about where they choose
to enroll.
At the end of senior year, students in the Access program are invited to continue
into the Success program if they plan to attend one of the roughly twenty colleges and
universities where Bottom Line provides ongoing campus-based support to students.
Within a given cohort of Access seniors, approximately 70 percent choose to attend
one of these “encouraged” colleges, and only a small percentage of these choose not to
continue in the Success program. Bottom Line selected these institutions as ones to en-
courage student enrollment based on where early participants in the Access program
had the greatest track records of persistence and success without incurring substan-
tial debt. As mentioned above, Bottom Line also discourages students from attending
institutions where prior cohorts of students have struggled to succeed or where stu-
dents had to assume substantial debt to fund the cost of attendance. Appendix table
A.1 shows the list of encouraged and discouraged colleges. Data from the Integrated
Postsecondary Education Data System (IPEDS) suggests that the average encouraged
college’s six-year graduation rate is 66 percent, compared with 40 percent for the dis-
couraged colleges. Encouraged colleges are also substantially less expensive, charging
an average tuition of $23,500 annually compared with $29,800 for the discouraged
colleges. Encouraged colleges are split between public and private institutions and are
relatively large, whereas discouraged colleges are all private and relatively small.
Through the Success Program, Bottom Line first provides transitional program-
ming each summer for rising college students, discussing how to read a college syl-
labus or what to expect from life on a college campus, among other topics. College
students are then advised and mentored on campus for up to six years by Bottom Line
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
f
/
e
d
u
e
d
p
a
r
t
i
c
e
–
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
.
f
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
23
Intensive College Counseling, Enrollment, and Persistence
counselors to ensure that students have the support they need to earn a degree. First-
year students meet with Bottom Line counselors approximately three to four times per
semester, and older students meet with a counselor twice a semester on average. The
support focuses on academic, financial, career, and personal challenges.
3 . DATA A N D E M P I R I C A L S T R AT E G Y
Data
Data for this analysis come from Bottom Line, from the Massachusetts Department
of Elementary and Secondary Education (DESE), and from IPEDS. Bottom Line’s data
include all information it receives from students during their application process, as
well as data it generates during its selection process. We know each applicant’s full
name, high school, and high school class, and a small number of other self-reported
characteristics, including GPA and family size.3 Using each applicant’s name, high
school, and class, we merge Bottom Line’s data to DESE’s administrative data on all
Massachusetts public school students. Our match rate exceeds 93 percent. Of the 7 per-
cent of students who are unmatched, half are enrolled in private schools or are missing
school information entirely. The other half either have common names, which prevents
us from uniquely identifying them in DESE’s data, or have names that do not match
DESE’s records, either due to misspelling, use of nicknames or other use of non-legal
names. We verify both that unmatched applicants look demographically quite similar
to the sample as a whole and that match rates are unrelated to treatment status. We are
thus unconcerned that our subsequent results are confounded by the small number of
unmatched applicants.
DESE’s data contain demographic characteristics such as gender, race, and low-
income status, as well as indicators for various educational designations, such as En-
glish as a second language, limited English proficiency, and special and vocational
education status. DESE has also merged data on its high school students with Na-
tional Student Clearinghouse (NSC) data that tracks college enrollment throughout the
United States. Research by Dynarski, Hemelt, and Hyman (2015) suggests that NSC
coverage rates are around 95 percent for recent Massachusetts cohorts, implying that
nearly all college enrollment of our applicants should be captured by these data. In par-
ticular, other than colleges that specialize in theology, art, music, or law, every public
and private four-year college in Massachusetts that is listed in IPEDS also appears in
the NSC during the time period we are studying.
The NSC identifies which, if any, college a student is enrolled in at any moment in
time. It also identifies whether colleges are four-year or two-year, and public or private.
We supplement this with data from IPEDS that measure for each college institutional
characteristics such as six-year graduation rates and average net prices paid by enrolled
students. We limit the analysis sample to students with valid self-reported GPAs
3. Bottom Line also attempts to verify some of the self-reported characteristics, including income and GPA. The
chance that Bottom Line does this for a given student is related to their initial self-reports and is thus endoge-
nous to the selection process itself. As such, we focus on the versions reported initially by all students on their
applications. Though our main specifications include all students, our central results are not affected by exclud-
ing the 300 or so students who are ineligible due to income, first-generation status, or other reasons not related
to GPA.
24
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
f
/
e
d
u
e
d
p
a
r
t
i
c
e
–
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
.
f
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
Benjamin Castleman and Joshua Goodman
Table 1. Summary Statistics
Panel A: Demographics
Low income
Black
Hispanic
Asian
White
Female
ESL
Boston site
Panel B: Treatment Variables
GPA
Counseled by Bottom Line
Panel C: College Enrollment
Four-year college
Two-year college
Encouraged college
Discouraged college
N
(1)
2010—14
(2)
2010—12
0.80
0.41
0.28
0.21
0.08
0.68
0.54
0.82
3.08
0.55
0.66
0.11
0.50
0.04
0.78
0.40
0.30
0.19
0.09
0.69
0.51
0.78
3.06
0.58
0.64
0.10
0.47
0.04
4,992
2,730
Notes: Mean values of selected variables are shown for Bottom
Line applicants whose GPA is between 1.0 and 4.0. Columns 1
and 2, respectively, contain the high school classes of 2010—
14 and 2010—12. Panel C shows college enrollment outcomes
in the fall following high school graduation.
between 1.0 and 4.0 in order to exclude a small number of cases with extreme values
far from the eligibility threshold of 2.5.
The resulting sample, shown in the first column of table 1, consists of the nearly
5,000 Bottom Line applicants from the high school classes of 2010 through 2014 who
had GPAs between 1.0 and 4.0 and who were successfully merged to DESE’s data.
Sample characteristics are shown in panel A. Four-fifths are low-income students, as
measured by receipt of subsidized lunch. Over two-thirds are black or Hispanic and a
similar proportion are female. Over half speak a language at home other than English.
We refer to such students as English as a second language (ESL) students. Panel B
shows that the average GPA of a Bottom Line applicant is 3.08. During this period,
Bottom Line accepted 55 percent of its applicants for counseling.
College enrollment outcomes in the fall immediately following high school grad-
uation are shown in panel C.4 Given their family backgrounds, these students have
high rates of enrollment, with 66 percent enrolling in four-year colleges and another
11 percent enrolling in two-year colleges. Three-fourths of the students who enroll in a
four-year college do so in one of the institutions encouraged by Bottom Line. Only 4
percent enroll in one of the colleges discouraged by the organization.
4. We define fall enrollment as having an enrollment spell that includes 1 October and, for later measures of
persistence, spring enrollment as a spell that includes 1 March.
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
f
/
/
e
d
u
e
d
p
a
r
t
i
c
e
–
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
f
.
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
25
Intensive College Counseling, Enrollment, and Persistence
Table 2. First Stage Impact of GPA Eligibility on Counseling
(1)
Counseled
by
Bottom Line
(2)
Only
Access
Program
(3)
Success +
Access
Program
(4)
Counseled,
No
Controls
(5)
Counseled,
Donut
Hole
(5)
Counseled,
Bandwidth
of 1.0
Panel A: 2010—14 Cohorts
Eligible
Control mean
N
Panel B: 2010—12 Cohorts
Eligible
Control mean
N
0.249***
(0.044)
0.22
4,992
0.301***
(0.045)
0.21
2,730
0.085***
(0.019)
0.163***
(0.033)
0.12
4,992
0.09
4,992
0.134***
(0.031)
0.166***
(0.027)
0.18
2,730
0.04
2,730
0.248***
(0.043)
0.22
4,992
0.293***
(0.043)
0.21
2,730
0.291***
(0.045)
0.22
4,546
0.372***
(0.037)
0.21
2,459
0.185***
(0.046)
0.22
3,780
0.266***
(0.052)
0.21
2,100
Notes: Robust standard errors clustered by distance from the GPA threshold are in parentheses. Coefficients in columns
1—3 come from regressions of the listed outcome on an indicator for GPA eligibility, distance from the GPA threshold, the
interaction of those two, a Worcester site indicator, high school class fixed effects and the set of demographic controls
shown in table A.2, using a bandwidth of 1.5 GPA points. Panel A includes the high school classes of 2010—14, and panel
B includes the classes of 2010—12. The outcome in column 1 is an indicator for being counseled by Bottom Line. Columns
2 and 3 separate this treatment status into Bottom Line’s two programs, Access and Success. Also listed is the mean value
of each outcome for students with GPAs between 2.3 and 2.5. Columns 4—6 replicate column 1, respectively, removing the
demographic controls, excluding observations less than 0.1 GPA point from the threshold, and limiting the bandwidth to 1.0
GPA point.
***p < 0.01.
Our initial analysis will focus on these immediate college enrollment outcomes for
the five cohorts represented in our data. We later limit the sample to the first three
cohorts, the high school classes of 2010 through 2012, for whom we can observe en-
rollment spells for at least three academic years following high school graduation. We
use such observations to measure persistence in college for these earliest three cohorts.
The second column of table 2 shows that those first three cohorts are quite similar to
the sample as a whole.
Empirical Strategy
Whether Bottom Line is partly responsible for the high observed college enrollment
rates is one key question of interest here. Evaluating the impact of college counseling
is generally difficult because the quantity and quality of guidance available to a given
student is correlated with numerous other determinants of enrollment and persistence,
including school quality, parental involvement, and the student’s own aspirations. We
address this challenge by exploiting the fact that, as part of its selection process, Bottom
Line uses a GPA threshold of 2.5 as one criterion for determining which students are
eligible for its services. It uses this threshold to help identify students whose high school
transcripts suggest they have the potential to succeed in a four-year college. We use this
GPA threshold to implement a regression discontinuity design (RD) that compares the
college outcomes of students just above and below that threshold. Such students should
be nearly identical in terms of academic skills, as measured by GPA, as well as other
characteristics, a fact we verify empirically below. They should differ only in their access
to the college counseling services provided by Bottom Line.
26
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
f
/
/
e
d
u
e
d
p
a
r
t
i
c
e
-
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
f
.
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
Benjamin Castleman and Joshua Goodman
We generate our estimates of the impact of intensive college counseling in the fol-
lowing way. The reduced form version of our baseline specification is a local linear
regression of the form
Collegeisc
= β0 + β1Eligibleisc
+ β2GPAisc + β3Eligible × GPAisc + δc + Xi + εisc.
(1)
Here, College measures various college outcomes for student i in high school s and
graduating class c. Eligible indicates whether that student is above the GPA eligibility
threshold, GPA measures his distance from the threshold in GPA points, and Eligible
× GPA is the interaction of those two variables. The two GPA variables model the re-
lationship between GPA and college outcomes as linear, allowing that slope to vary on
either side of the threshold. The coefficient on Eligible thus measures the difference
in college outcomes between students just above and just below that threshold. Grad-
uating class fixed effects control for year-specific differences in college outcomes that
affect all students similarly. Student-level controls X include indicators for gender, race,
low income status, ESL status, limited English proficiency status, vocational education
status, and special education status, as well as an indicator for whether the student is
at Bottom Line’s Boston or Worcester site.
Bottom Line rejected some students above the GPA threshold and accepted oth-
ers below it. As a result, the coefficients from the reduced form specification generate
intent-to-treat estimates of the impact of increased eligibility for counseling on college
outcomes. We are, however, interested in the impact of counseling itself. We therefore
present estimates from a fuzzy RD in which we instrument the probability of treatment
with GPA eligibility. Our first stage regression has the form
Counseledisc = β0 + β1Eligibleisc
+ β2GPAisc + β3Eligible × GPAisc + δc + Xi + εisc,
(2)
where Counseled indicates acceptance into the Bottom Line program.5 We then estimate
treatment impacts by running regressions of the form
Collegeisc
= β0 + β1Counseledisc + β2GPAisc + β3Eligible × GPAisc + δc + Xi + εisc,
(3)
where students’ engagement with counseling has been instrumented using the first
stage equation above. The counseling coefficient thus estimates a local average treat-
ment effect for students granted access to Bottom Line’s program because of GPA
eligibility.
Following Lee and Card (2008), our baseline specification for these instrumental
variables estimates clusters standard errors by distance from the GPA threshold be-
cause GPA is a fairly discrete variable, with well over half of students reporting values
that are multiples of 0.1. Because of the relatively small sample size, we use as a default
a bandwidth of 1.5 GPA points, including GPAs of 1.0 to 4.0, which captures all but the
lowest and highest GPAs. We show later that our results are robust to using a smaller
5. Nearly every student accepted into Bottom Line’s program receives at least some counseling so that we do not
distinguish acceptance from counseling itself.
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
f
/
/
e
d
u
e
d
p
a
r
t
i
c
e
-
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
f
.
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
27
Intensive College Counseling, Enrollment, and Persistence
bandwidth of 1.0, which corresponds closely to the optimal bandwidth suggested
by Imbens and Kalyanaraman (2012), though precision decreases given the sample
size.
Validity of our RD estimates requires that students not systematically manipulate
on which side of the GPA threshold they fall. Such a problem would arise if students,
in order to participate in Bottom Line, inflated their GPAs because of knowledge of
the GPA admissions threshold.6 Another potential problem would arise if knowledge
of the threshold differentially affected across that threshold the number or type of stu-
dent choosing to apply to Bottom Line. Although conversations with the organization
suggest that the GPA threshold was not widely publicized to students, we have little
actual evidence about the extent of students’ awareness of it. As such, we cannot rule
out the potential for bias due to manipulation or selection.
We can, however, test whether the density of students just above the threshold looks
similar to the density just below the threshold, as suggested by McCrary (2008). Such
tests show no evidence that GPAs just above 2.5 are over-represented relative to GPAs
just below 2.5, suggesting no obvious manipulation by students. Appendix figure A.1
shows the distribution of GPAs graphically. Low GPAs are less common than high ones
and multiples of 0.25 are particularly common, but there is no obvious difference in
the distribution of GPAs around the eligibility threshold than around other multiples
of 0.25. To rule out the possibility that students below the threshold report GPAs of 2.5
in order to qualify for counseling, we show that our results are robust to the exclusion
of students with 0.1 GPA points of the bandwidth, a so-called “donut hole” regression
discontinuity.
We also confirm that nearly all observable covariates are balanced across the thresh-
old by running our reduced form specification using such covariates as outcomes.
Table A.2 shows the results of these covariate balance tests, with panel A including
all five cohorts and panel B including the earliest three cohorts. In each case, of the ten
variables tested, nine show little clear imbalance across the threshold and the remain-
ing one is likely due to chance. The magnitudes of any covariate imbalances differences
are small enough that controlling for such covariates has nearly no effect on our esti-
mated impacts, as we show later in our robustness checks. The balance of density and
covariates at the threshold suggest that students on either side of the threshold are sim-
ilar along both observable and unobservable dimensions. Our RD coefficients should
therefore provide unbiased estimates of the impact of intensive counseling on college
outcomes.
4 . C O L L E G E E N RO L L M E N T A N D P E R S I S T E N C E
First Stage Results
The GPA threshold provides a substantial source of exogenous variation in the prob-
ability that a given student is counseled by Bottom Line. Figure 1, which graphs the
relationship between treatment probability and GPA, shows a clear discontinuity at the
threshold. Table 2 presents regression-based estimates of that first stage relationship.
6. Students may have been aware that Bottom Line would eventually request transcripts in part to verify their
GPAs, which might discourage students from such inflation.
28
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
/
f
e
d
u
e
d
p
a
r
t
i
c
e
-
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
.
f
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
Benjamin Castleman and Joshua Goodman
Notes: Shown here is the proportion of students accepted into the Bottom Line college advising program, by 0.1-point wide GPA bins.
The size of each circle is proportional to the number of students in each bin. Also shown are the fitted lines from the baseline first
stage specification described in the text. The sample includes all Bottom Line applicants from the high school classes of 2010—14.
Figure 1. First Stage Relationship between GPA and Intensive College Counseling.
For the full five cohorts, students just above the threshold are 25 percentage points more
likely to receive counseling from Bottom Line than students just below the threshold.
This represents roughly a doubling in treatment probability across the threshold. The
F-statistic associated with that coefficient exceeds 30, well above the value of 10 sug-
gested by Staiger and Stock (1997) to rule out a weak instrument. For the earliest three
cohorts, GPA eligibility also provides a strong instrument, raising treatment probability
by 30 percentage points.
The coefficients in column 1 will serve as our first-stage estimates for subsequent
instrumental variables analyses. We show in columns 2 and 3 that the increase in treat-
ment probability comes from an increase in both the Access program, which focuses on
the application and initial enrollment process, and the Success program, which contin-
ues to counsel students after they enroll at Bottom Line’s encouraged colleges. Program
choice within Bottom Line is itself likely endogenous to the initial counseling process
because only students who enroll at encouraged colleges are eligible for the Success
program. Nonetheless, we show these estimates to highlight that the counseling treat-
ment studied here is really the combination of two programs, one of which emphasizes
initial enrollment and the other of which emphasizes persistence.
The last three columns of table 2 show that the magnitude of our first stage es-
timates is unchanged by exclusion of demographic controls, grows slightly in the
donut hole specification excluding students immediately on the threshold, and shrinks
slightly but remains a strong instrument if the bandwidth is reduced to 1.0 GPA point.
Our source of exogenous variation in the probability of receiving intensive college coun-
seling is thus relatively insensitive to empirical specification.
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
f
/
/
e
d
u
e
d
p
a
r
t
i
c
e
-
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
.
f
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
29
Intensive College Counseling, Enrollment, and Persistence
Notes: Shown here is the proportion of students enrolling immediately after high school graduation in one of Bottom Line’s encouraged
colleges, by 0.1-point wide GPA bins. The size of each circle is proportional to the number of students in each bin. Also shown are
the fitted lines from the baseline reduced form specification described in the text. The sample includes all Bottom Line applicants
from the high school class of 2010.
Figure 2. Enrollment at Encouraged College.
Initial Enrollment Impacts
Figure 2 shows the reduced-form relationship between GPA and enrollment in one
of Bottom Line’s encouraged colleges. The visually apparent discontinuity implies that
Bottom Line is inducing substantial numbers of students to enroll in such colleges.
We confirm this in table 3, which shows instrumental variable estimates of the im-
pact of Bottom Line’s counseling treatment on various college enrollment outcomes as
measured in the fall immediately following high school graduation. Below each coef-
ficient is the control complier mean, computed as suggested by Abadie, Angrist, and
Imbens (2002). Abadie (2003) measures the expected value of the outcome variable
for untreated compliers, those who would have received counseling if not for being
disqualified by their GPA.
Column 1 shows that treated students are 52 percentage points more likely to en-
roll in one of Bottom Line’s encouraged colleges, relative to an enrollment rate at these
colleges of 22 percent for compliers just below the GPA threshold. Treatment also low-
ers the probability of enrolling in one of the discouraged colleges by 23 percentage
points from a 26-percentage point baseline, suggesting that Bottom Line successfully
discourages nearly all of its participants from choosing one of those colleges. Both of
these estimates are statistically significant across all tested specifications, suggesting
that Bottom Line is successful at directing students’ enrollment behavior in the way it
intends.
Counseling also lowers the probability of enrolling in a two-year college by a sta-
tistically significant 26 percentage points. Enrollment in four-year colleges rises by 20
percentage points, though this estimate is marginally statistically insignificant in only
30
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
f
/
e
d
u
e
d
p
a
r
t
i
c
e
-
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
.
f
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
Benjamin Castleman and Joshua Goodman
Table 3.
Impact of Counseling on Initial College Choice
Encouraged college
CCM
Discouraged college
CCM
Two-year college
CCM
Four-year college
CCM
Any college
CCM
Lower cost four-year college
CCM
High graduation rate four-year college
CCM
N
(1)
Bandwidth = 1.5,
With Controls
(2)
Bandwidth = 1.5,
No Controls
(3)
Bandwidth = 1.5,
Donut Hole
(4)
Bandwideth = 1.0,
With Controls
0.515***
(0.133)
0.22
−0.226***
(0.068)
0.26
−0.259**
(0.122)
0.32
0.202
(0.128)
0.55
−0.057
(0.157)
0.87
0.388***
(0.112)
0.23
0.209*
(0.121)
0.27
4,992
0.506***
(0.136)
0.22
−0.224***
(0.068)
0.26
−0.246*
(0.131)
0.31
0.181
(0.133)
0.56
−0.066
(0.152)
0.87
0.374***
(0.114)
0.23
0.187
(0.127)
0.28
4,992
0.689***
(0.131)
0.07
−0.262***
(0.074)
0.31
−0.198*
(0.114)
0.30
0.214*
(0.124)
0.51
0.016
(0.152)
0.80
0.360***
(0.105)
0.24
0.218*
(0.119)
0.19
4,546
0.463**
(0.215)
0.27
−0.315***
(0.111)
0.36
−0.170
(0.212)
0.24
0.138
(0.222)
0.63
−0.033
(0.238)
0.88
0.318*
(0.177)
0.30
0.216
(0.200)
0.29
3,780
Notes: Robust standard errors clustered by distance from the GPA threshold are in parentheses. Coefficients come from regressions
of the listed outcome on an indicator for Bottom Line counseling, where counseling has been instrumented with GPA eligibility as
described in the text. The sample includes the high school classes of 2010—14. Outcomes are indicators for college enrollment in
the fall immediately following high school graduation. Lower-cost colleges are those that the 2013 IPEDS lists as having average net
price for aid-receiving students below $25,000. High-graduation rate colleges are those that the 2013 IPEDS lists as having six-year degree completion rates of at least 50 percent. Column 1 uses a bandwidth of 1.5 GPA points and includes the demographic controls listed in table A.2. Columns 2—4 replicate column 1, respectively removing the demographic controls, excluding observations less than 0.1 GPA point from the threshold, and limiting the bandwidth to 1.0 GPA point. Also listed is the control complier mean (CCM). *p < 0.10; **p < 0.05; ***p < 0.01. one of our four specifications. There is thus suggestive, though not conclusive, evi- dence that counseling causes some students to change the type of college they attend, from two-year to four-year. The two-year and four-year estimates offset each other, so that counseling appears to have little impact on the overall probability of college en- rollment. Overall, we see clear evidence that Bottom Line’s intensive college guidance effectively shifts students’ enrollment away from two-year, or discouraged four-year, col- leges, and toward four-year colleges the organization believes will be more successful at graduating those students. One result of such shifting is that, conditional on enrolling in a four-year college, counseled students choose colleges with lower average net prices and perhaps higher graduation rates. In the penultimate row, we define a “lower cost” indicator for whether immediately after high school graduation a student enrolls in a four-year college with an average net price for aid-receiving students of under $25,000, thus avoiding some
of the colleges where students are most likely to incur large amounts of debt. In the last
row of table 3, we define a “high graduate rate” indicator for whether immediately after
high school graduation a student enrolls in a four-year college with a six-year bachelor’s
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
f
/
e
d
u
e
d
p
a
r
t
i
c
e
-
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
f
.
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
31
Intensive College Counseling, Enrollment, and Persistence
Notes: Shown here is the proportion of students enrolling in a lower cost four-year college, by 0.1-point wide GPA bins. Lower
cost colleges are those whose average net price for aid-receiving students in 2012 was under $25,000. The size of each circle is proportional to the number of students in each bin. Also shown are the fitted lines from the baseline reduced form specification described in the text. The sample includes all Bottom Line applicants from the high school classes of 2010—14. Figure 3. Enrollment in Lower Cost Four-Year Colleges. degree completion rate of at least 50 percent. Counseling substantially and clearly in- creases the probability that a student enrolls in a lower cost four-year college, the re- duced form graphical version of which is shown in figure 3. We also see suggestive evidence that counseling makes students more likely to choose high-graduation-rate colleges. Counseling thus appears to guide students toward colleges where they will likely incur less debt and will be more likely to graduate, as Bottom Line intends. Persistence Impacts Initial college enrollment is not the only outcome of interest, particularly given that many students who enroll in college do not persist and thus fail to complete their de- grees. Bottom Line’s Success program, which supports students throughout their time at encouraged colleges, is designed specifically to improve persistence. We can measure persistence through three years of college for the first three cohorts of students we ob- serve, the high school classes of 2010–12.7 To estimate persistence effects, we measure for these three cohorts the impact of counseling on four-year college enrollment in the fall of the first year, the spring of the second year, and the spring of the third year after high school graduation. We also measure the total number of fall and spring semesters in which a student has been enrolled in a four-year college by the spring of his third 7. Although we can observe the earliest two cohorts through four years of college, three cohorts is the minimum we need in order to generate estimates with sufficient precision to be of interest. 32 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . / f / e d u e d p a r t i c e - p d l f / / / / / 1 3 1 1 9 1 6 9 2 0 2 6 e d p _ a _ 0 0 2 0 4 p d . f f b y g u e s t t o n 0 8 S e p e m b e r 2 0 2 3 Benjamin Castleman and Joshua Goodman Table 4. Impact of Counseling on Persistence in Four-Year Colleges (1) Bandwidth = 1.5, With Controls (2) Bandwidth = 1.5, No Controls (3) Bandwidth = 1.5, Donut Hole (4) Bandwidth = 1.0, With Controls Enrolled in four-year college, fall year 1 CCM Enrolled in four-year college as of spring year 2 CCM Total semesters enrolled through spring year 2 CCM Enrolled in all semesters through spring year 2 CCM Enrolled in four-year college as of spring year 3 CCM Total semesters enrolled through spring year 3 CCM Enrolled in all semesters through spring year 3 CCM N 0.126 (0.138) 0.56 0.256** (0.103) 0.33 0.771* (0.453) 1.72 0.274** (0.110) 0.25 0.186 (0.142) 0.29 1.165* (0.651) 2.32 0.181 (0.127) 0.24 2,730 0.093 (0.150) 0.58 0.223* (0.114) 0.34 0.646 (0.503) 1.78 0.239** (0.114) 0.26 0.163 (0.137) 0.29 0.990 (0.699) 2.39 0.157 (0.128) 0.24 2,730 0.136 (0.119) 0.53 0.206** (0.089) 0.33 0.705* (0.385) 1.68 0.231** (0.093) 0.26 0.194 (0.140) 0.26 1.061* (0.582) 2.28 0.185* (0.106) 0.21 2,459 0.083 (0.193) 0.63 0.266* (0.147) 0.36 0.656 (0.657) 1.94 0.290* (0.163) 0.26 0.197 (0.188) 0.33 1.083 (0.946) 2.60 0.231 (0.183) 0.26 2,100 Notes: Robust standard errors clustered by distance from the GPA threshold are in parentheses. Coefficients come from regressions of the listed outcome on an indicator for Bottom Line counseling, where counseling has been instrumented with GPA eligibility as described in the text. The sample includes the high school classes of 2010—12. The first row’s outcome is an indicator for four-year college enrollment in the fall immediately after high school graduation. The second row’s outcome is an indicator for four-year college enrollment in the spring two years after high school graduation. The third row measures the total number of semesters enrolled in four-year colleges by that second spring, and the fourth row uses an indicator for four semesters of such enrollment by that second spring. The remaining three rows repeat those outcomes but for the spring of the third year following high school graduation. Column 1 uses a bandwidth of 1.5 GPA points and includes the demographic controls listed in table A.2. Columns 2—4 replicate column 1, respectively removing the demographic controls, excluding observations less than 0.1 GPA point from the threshold, and limiting the bandwidth to 1.0 GPA point. Also listed is the control complier mean (CCM). *p < 0.10; **p < 0.05. year, as well as the probability that he has enrolled continuously in all such semesters to date.8 Table 4 shows the result of such analysis. The point estimates in the first row sug- gest that, for these earliest three cohorts, counseling increases four-year college enroll- ment rates in the fall immediately following high school graduation by a statistically insignificant 10 percentage points or so. By the spring of their second year, counseled students are a statistically significant 26 percentage points more likely to be enrolled in a four-year college. They have enrolled in about 0.7 more semesters of four-year col- lege by that time and are 27 percentage points more likely to have been enrolled for all four semesters to date. The latter result represents roughly a doubling of the baseline probability of such continuous enrollment. A graphical version of that result is shown in figure 4. 8. By construction, this variable can range from zero (no four-year college enrollment at any time) to six (four-year college enrollment in all semesters observable by the end of the third year). l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . f / / e d u e d p a r t i c e - p d l f / / / / / 1 3 1 1 9 1 6 9 2 0 2 6 e d p _ a _ 0 0 2 0 4 p d f . f b y g u e s t t o n 0 8 S e p e m b e r 2 0 2 3 33 Intensive College Counseling, Enrollment, and Persistence Notes: Shown here is the proportion of students continuously enrolled in four-year colleges for the two years following high school graduation, by 0.1-point wide GPA bins. The size of each circle is proportional to the number of students in each bin. Also shown are the fitted lines from the baseline reduced form specification described in the text. The sample includes all Bottom Line applicants from the high school classes of 2010—12. Figure 4. Persistence at Four-Year Colleges. Nearly all of these persistence results by the spring of the second year after high school graduation are marginally or statistically significant. By the spring of students’ third year, we still observe positive impacts on these various persistence measures, al- though only a few are marginally statistically significant. These results provide clear evidence that counseling improves overall persistence in four-year colleges through the end of students’ second year, as well as suggestive evidence of improvement through the third year. 5 . D I S C U S S I O N A N D C O N C L U S I O N Improving college access and success for economically disadvantaged students has emerged as a top policy priority at the federal level. Much attention has been devoted to low-cost, easily scaled strategies to improve college entry and success for lower-income students. These informational and behavioral strategies have generated positive im- pacts for high-achieving students and for students who have already completed several key stages in the application process. It is an open question, however, whether these low-touch interventions would be similarly effective for students lower in the academic distribution or for students who are not as far along in the college process. In the ab- sence of this evidence, many communities still provide intensive college-advising to help high school juniors and seniors through the college and financial aid application process. Bottom Line is one such model, with a particular focus on guiding students to enroll at colleges and universities where the program believes students are well- positioned to graduate without incurring substantial debt. 34 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . f / / e d u e d p a r t i c e - p d l f / / / / / 1 3 1 1 9 1 6 9 2 0 2 6 e d p _ a _ 0 0 2 0 4 p d . f f b y g u e s t t o n 0 8 S e p e m b e r 2 0 2 3 Benjamin Castleman and Joshua Goodman Our results show clear evidence that such intensive college counseling influences students’ college choices, with counseled students substantially more likely to enroll in colleges encouraged by the program. Counseling thus shifts students toward four-year colleges that are substantially less costly than ones they otherwise would have chosen. By helping students enroll and persist at institutions where they are equally likely to succeed but at substantially lower average cost, Bottom Line may reduce the financial burden students incur in pursuing a college degree. Given substantial policy attention to rising loan default rates and the negative impacts that loan repayments can have on asset accumulation and other outcomes, this is an encouraging finding. It also suggests that other college access programs may want to focus not only on increasing enrollment rates but also on shifting students toward colleges with better characteristics, such as cost and graduation rates. It may be easier to change the college choices of students on the intensive margin (choosing which college to attend) than the extensive margin (choosing whether to attend). There is also suggestive, though not conclusive, evidence that counseling shifts some students from the two-year sector and into the four-year sector. Importantly, we also see suggestive evidence of increased persistence in four-year colleges after three years. This suggests that intensive counseling alters not only initial college enrollment but also subsequent longer-run outcomes critical to evaluating the efficacy of such programs. There is a growing body of evidence that suggests the choice of where to enroll for lower-income or first-generation students can have important consequences for their longer-term success. Recent research demonstrates that students who are just above an admissions threshold for a public four-year university have substantially higher bach- elor’s degree completion rates than students just below the threshold who have access to community colleges instead (Goodman, Hurwitz, and Smith 2017). There has been a dramatic increase in loan default rates among borrowers at for-profit institutions and community colleges, which enroll a substantial share of the lower-income and first- generation student populations (Dynarski 2014). Employers appear to assign less value to degrees from for-profit institutions than they do degrees from less-selective pub- lic institutions, and labor market returns to a for-profit degree are also lower than for degrees from other institutions (Cellini and Turner 2016; Deming et al. 2016). Thus, Bottom Line’s impacts on low-income students’ college choices have the potential to generate lasting positive impacts further down the road. Moreover, Bottom Line’s ability to encourage, through advising, students to attend institutions with comparable quality but lower net costs can also inform ongoing state and federal efforts, such as the recently updated College Scorecard, to promote more informed consumer choice about higher education. One potential conclusion is that the Department of Education should invest in resources to proactively reach out to students and families about the information contained in the Scorecard, especially with newly available information about indebtedness and earnings, to help them make informed choices about where they apply and attend. One question that our research cannot definitively address is the channel through which intensive college counseling affects college persistence. Counseling during high school affects college choice and affordability, which may be sufficient to explain the observed persistence results. Many of the treated students continue, however, to receive l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . f / / e d u e d p a r t i c e - p d l f / / / / / 1 3 1 1 9 1 6 9 2 0 2 6 e d p _ a _ 0 0 2 0 4 p d . f f b y g u e s t t o n 0 8 S e p e m b e r 2 0 2 3 35 Intensive College Counseling, Enrollment, and Persistence counseling while enrolled at college, a key feature of Bottom Line’s model. We cannot identify whether increased college affordability or continuing support while on campus, or some combination thereof, explains increased persistence. An open question is whether Bottom Line’s impact on where students enroll and whether they persist are sufficient to justify the program’s cost of approximately $5,000
per student served, given that the Access program costs about $1,400 per student and the Success program costs about $1,000 for each year a student is in college. Our es-
timates suggest increased four-year college enrollment and persistence rates on the
order of 20 percentage points, which in turn suggests a cost of roughly $25,000 per additional college enrollee or persister. Cohodes and Goodman (2014) estimate that, in Massachusetts, the net present value of a college degree relative to some college with- out a degree is roughly $1,000,000. If Bottom Line’s persistence impacts translate into
completion impacts, then this treatment raises students’ lifetime earnings by roughly
$200,000, far outweighing the costs of the intervention. Nonetheless, it is important to ask whether the financial resources currently allo- cated to programs like Bottom Line could be more effectively allocated to other policy strategies for improving college access and success. Dynarski, Hyman, and Schanzen- bach (2013) note that class size reductions in the Tennessee STAR experiment cost $400,000 per additional college enrollee, while Upward Bound’s bundle of treatments
costs over $90,000 per additional enrollee. Bottom Line’s costs look quite favorable relative to these interventions. Conversely, the Free Application for Federal Student Aid (FAFSA) completion assistance program studied in Bettinger et al. (2012) costs only $1,100 per additional college enrollee, and the peer mentoring programs studied in
Carrell and Sacerdote (2013) cost only $2,400 per additional enrollee. The intensive
counseling provided by Bottom Line falls somewhere in the middle of the cost distri-
bution of this spectrum of interventions.
It is also important to ask how scalable programs like Bottom Line are to other com-
munities, both because of the costs per student served and because of the leadership
and expertise required to advise students as comprehensively as Bottom Line does. One
potential interesting area for further inquiry is whether intensive advising programs
like Bottom Line can provide similar one-on-one guidance to students remotely, via in-
teractive technologies like video chat, screen sharing, and document collaboration. This
type of remote advising, if successful, could allow for economies of scale to lower the
per student costs. The CollegePoint initiative, supported by Bloomberg Philanthropies,
is currently investigating the efficacy of this remote advising approach.
As a result of these considerations, we have begun collaborating with Bottom Line
on the design of a long-term randomized controlled trial to more thoroughly evalu-
ate the program’s impact on students’ college trajectories. Starting with the graduating
class of 2015, we are implementing a multi-cohort experiment across Bottom Line’s
Massachusetts and New York sites. This experiment will provide sufficient power to
more precisely detect overall enrollment and persistence patterns, and the randomized
design will allow us to investigate average treatment effects across the population of
students who are eligible for the program. In addition, we are conducting surveys with
students both while they are still in high school and once they have matriculated in col-
lege, in order to better investigate both the mechanisms through which Bottom Line
is affecting students’ decisions and college outcomes, and to capture a more holistic
36
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
f
/
e
d
u
e
d
p
a
r
t
i
c
e
-
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
.
f
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
Benjamin Castleman and Joshua Goodman
set of measures for how Bottom Line is impacting students’ college choices and post-
secondary experiences. We will follow students for six to eight years following high
school graduation in order to investigate the program’s effect on degree completion.
The results of this experiment will better explore whether intensive advising programs
like Bottom Line, which clearly impact the type of institution at which students enroll,
justify the greater upfront resource investment.
ACKNOWLEDGMENTS
We thank Greg Johnson and Andrew MacKenzie of Bottom Line for explaining how their coun-
seling program works and for sharing data on applicants to their program. We thank Carrie
Conaway of the Massachusetts Department of Elementary and Secondary Education for shar-
ing state data on student outcomes. Napat Jatusripitak and Carlos Paez provided excellent re-
search assistance. Joshua Goodman gratefully acknowledges support from the Taubman Center
for State and Local Government and the Rappaport Institute for Greater Boston. All errors are our
own.
REFERENCES
Abadie, Alberto. 2003. Semiparametric instrumental variable estimation of treatment response
models. Journal of Econometrics 113(2):231–263. doi:10.1016/S0304-4076(02)00201-4.
Abadie, Alberto, Joseph Angrist, and Guido Imbens. 2002. Instrumental variables estimates of
the effect of subsidized training on the quantiles of trainee earnings. Econometrica 70(1):91–117.
doi:10.1111/1468-0262.00270.
Avery, Christopher. 2010. The effects of college counseling on high-achieving, low-income stu-
dents. NBER Working Paper No. 16359.
Avery, Christopher. 2013. Evaluation of the college possible program: Results from a randomized
controlled trial. NBER Working Paper No. 19562.
Avery, Christopher, and Thomas J. Kane. 2004. Student perceptions of college opportunities.
The Boston COACH program. In College choices: The economics of where to go, when to go, and
how to pay for it, edited by Caroline Hoxby, pp. 355–394. Chicago: University of Chicago Press.
doi:10.7208/chicago/9780226355375.003.0009.
Bailey, Martha J., and Susan M. Dynarski. 2011. Inequality in postsecondary attainment. In
Whither opportunity: Rising inequality, schools, and children’s life chances, edited by Greg Duncan
and Richard Murnane, pp. 117–132. New York: Russell Sage Foundation.
Baum, Sandy, Jennifer Ma, and Kathleen Payea. 2013. Education pays 2013: The benefits of higher
education for individuals and society. New York: The College Board.
Bettinger, Eric P., Bridget T. Long, Philip Oreopoulos, and Lisa Sanbonmatsu. 2012. The role of
application assistance and information in college decisions: Results from the H&R Block FAFSA
experiment. Quarterly Journal of Economics 127(3):1205–1242. doi:10.1093/qje/qjs017.
Bowen, William G., Matthew M. Chingos, and Michael S. McPherson. 2009. Crossing the finish
line. Princeton, NJ: Princeton University Press.
Carrell, Scott E., and Mark Hoekstra. 2014. Are school counselors a cost-effective education input?
Economics Letters 125(1):66–69. doi:10.1016/j.econlet.2014.07.020.
Carrell, Scott, and Bruce Sacerdote. 2013. Late interventions matter too: The case of college coach-
ing in New Hampshire. NBER Working Paper No. 19031
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
/
f
e
d
u
e
d
p
a
r
t
i
c
e
-
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
f
.
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
37
Intensive College Counseling, Enrollment, and Persistence
Castleman, Benjamin L., and Lindsay C. Page. 2016. Freshman year financial aid nudges: An
experiment to increase FAFSA renewal and college persistence. Journal of Human Resources
51(2):389–415. doi:10.3368/jhr.51.2.0614-6458R.
Cellini, Stephanie Riegg, and Nicholas Turner. 2016. Gainfully employed? Assessing the employ-
ment and earnings of for-profit college students using administrative data. NBER Working Paper
No. 22287.
Cohodes, Sarah, and Joshua Goodman. 2014. Merit aid, college quality and college completion:
Massachusetts’ Adams Scholarship as an in-kind subsidy. American Economic Journal: Applied
Economics 6(4):251–285. doi:10.1257/app.6.4.251.
Deming, David, Noam Yuchtman, Amira Abulafi, Claudia Goldin, and Lawrence Katz. 2016. The
value of postsecondary credentials in the labor market: An experimental study. American Eco-
nomic Review 106(3):778–806. doi:10.1257/aer.20141757.
Dynarski, Susan M. 2014. An economist’s perspective on student loans in the United States. ES
Working Paper Series, Brookings Institution.
Dynarski, Susan M., Steven W. Hemelt, and Joshua M. Hyman. 2015. The missing manual: Using
national student clearinghouse data to track postsecondary outcomes. Educational Evaluation and
Policy Analysis 37 (1S):53S–79S. doi:10.3102/0162373715576078.
Dynarski, Susan, Joshua Hyman, and Diane Whitmore Schanzenbach. 2013. Experimental evi-
dence on the effect of childhood investments on postsecondary attainment and degree comple-
tion. Journal of Policy Analysis and Management 32(4):692–717. doi:10.1002/pam.21715.
Goodman, Joshua, Michael Hurwitz, and Jonathan Smith. 2017. Access to four-year public col-
leges and degree completion. Journal of Labor Economics 35(3):829–867.
Grodsky, Eric, and Melanie T. Jones. 2007. Real and imagined barriers to college entry: Percep-
tions of cost. Social Science Research 36(2):745–766. doi:10.1016/j.ssresearch.2006.05.001.
Horn, Laura, Xianglei Chen, and Chris Chapman. 2003. Getting ready to pay for college: What
students and their parents know about the cost of college tuition and what they are doing to find out.
Washington, DC: National Center for Education Statistics, Institute of Education Sciences, U.S.
Department of Education.
Hoxby, Caroline, and Christopher Avery. 2013. The missing “one-offs”: The hidden supply of high-
achieving, low income students. Available https://www.brookings.edu/wp-content/uploads/2016
/07/2013a_hoxby.pdf. Accessed 1 March 2017.
Hoxby, Caroline, and Sarah Turner. 2013. Expanding college opportunities for high-achieving,
low income students. Stanford, CA: SIEPR Discussion Paper No. 12–014.
Hurwitz, Michael, and Jessica Howell. 2014. Estimating causal impacts of school counselors with
regression discontinuity designs. Journal of Counseling and Development 92(3):316–327. doi:10.
1002/j.1556-6676.2014.00159.x.
Imbens, Guido, and Karthik Kalyanaraman. 2012. Optimal bandwidth choice for the regression
discontinuity estimator. Review of Economic Studies 79(3):933–959. doi:10.1093/restud/rdr043.
Lee, David S., and David Card. 2008. Regression discontinuity inference with specification error.
Journal of Econometrics 142(2):655–674. doi:10.1016/j.jeconom.2007.05.003.
McCrary, Justin. 2008. Manipulation of the running variable in the regression discontinuity de-
sign: A density test. Journal of Econometrics 142(2):698–714. doi:10.1016/j.jeconom.2007.05.005.
38
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
/
f
e
d
u
e
d
p
a
r
t
i
c
e
-
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
.
f
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
Benjamin Castleman and Joshua Goodman
Reback, Randall. 2010. Noninstructional spending improves noncognitive outcomes: Disconti-
nuity evidence from a unique elementary school counselor financing system. Education Finance
and Policy 5(2):105–137. doi:10.1162/edfp.2010.5.2.5201.
Seftor, Neil, Arif Mamun, and Allen Schirm. 2009. The impacts of regular upward bound on
postsecondary outcomes 7–9 years after scheduled high school graduation: Final report. Prince-
ton, NJ: Mathematica Policy Research.
Smith, Jonathan, Matea Pender, and Jessica Howell. 2013. The full extent of academic under-
match. Economics of Education Review 32:247–261. doi:10.1016/j.econedurev.2012.11.001.
Staiger, Douglas, and James H. Stock. 1997. Instrumental variables regression with weak instru-
ments. Econometrica 65(3):557–586. doi:10.2307/2171753.
A P P E N D I X A : A D D I T I O N A L DATA
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
/
f
e
d
u
e
d
p
a
r
t
i
c
e
-
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
f
.
Notes: Shown here is the distribution of GPAs among Bottom Line applicants from the high school classes of 2010—14.
Figure A.1. GPA Distribution.
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
39
Intensive College Counseling, Enrollment, and Persistence
Table A.1.
Characteristics of Bottom Line’s Encouraged and Discouraged Colleges
Sector
Main
Degree
Undergraduate
Enrollment
Net
Cost
In-State
Tuition
Six-Year
Graduation
Rate
Percent
Receiving
Pell Grant
Institution
Panel A: Encouraged Colleges
Bentley University
Boston College
Boston University
Private nonprofit
Private nonprofit
Private nonprofit
Bridgewater State University
Public
Clark University
Private nonprofit
Fitchburg State University
Framingham State University
Public
Public
College of the Holy Cross
Private nonprofit
University of Massachusetts-Lowell
University of Massachusetts-Amherst
University of Massachusetts-Boston
Public
Public
Public
MCPHS University
Private nonprofit
Massachusetts College of Liberal Arts
Public
Northeastern University
Private nonprofit
Quinsigamond Community College
Salem State University
University of Massachusetts-Dartmouth
Public
Public
Public
Suffolk University
Wentworth Institute of Technology
Worcester Polytechnic Institute
Private nonprofit
Private nonprofit
Private nonprofit
Worcester State University
Public
Unweighted average
Panel B: Discouraged Colleges
Bay State College
Becker College
Curry College
Fisher College
Lasell College
Mount Ida College
Newbury College
Nichols College
Regis College
Unweighted average
Private for-profit
Private nonprofit
Private nonprofit
Private nonprofit
Private nonprofit
Private nonprofit
Private nonprofit
Private nonprofit
Private nonprofit
BA
BA
BA
BA
BA
BA
BA
BA
BA
BA
BA
BA
BA
BA
AA
BA
BA
BA
BA
BA
BA
AA
BA
BA
AA
BA
BA
BA
BA
BA
4,172
9,465
29,886
41,110
33,070
45,622
16,460
34,603
44,880
9,489
2,312
4,148
4,255
2,878
11,830
21,672
11,786
3,808
1,483
17,477
8,053
23,415
39,550
12,849
17,552
8,985
8,080
32,118
44,272
16,351
12,097
19,087
13,443
11,741
11,966
34,345
28,470
14,837
8,525
13,204
31,503
41,686
7,647
7,134
7,202
5,535
3,975
4,012
5,033
7,500
1,196
1,871
2,794
1,733
1,667
1,261
961
1,260
1,188
1,548
6,510
15,420
5,094
8,130
17,092
11,681
27,507
31,716
31,201
29,200
35,483
42,778
14,402
8,157
22,688
23,500
25,440
19,748
28,697
31,500
30,561
34,715
30,797
27,575
25,316
30,000
27,772
29,377
24,111
28,950
26,673
32,370
37,829
34,380
28,577
29,846
0.87
0.91
0.84
0.58
0.81
0.50
0.51
0.91
0.54
0.73
0.44
0.71
0.57
0.83
.
0.46
0.49
0.55
0.63
0.81
0.49
0.66
0.27
0.31
0.45
0.39
0.53
0.40
0.31
0.47
0.49
0.40
0.16
0.14
0.15
0.24
0.21
0.34
0.28
0.16
0.30
0.25
0.38
0.30
0.45
0.14
0.45
0.33
0.38
0.29
0.28
0.15
0.27
0.27
0.51
0.39
0.26
0.58
0.32
0.39
0.50
0.35
0.36
0.41
Notes: Panel A lists the colleges to which Bottom Line encourages students to apply. Panel B lists those colleges to which Bottom Line
discourages students from applying. College characteristics are taken from the 2013 version of the IPEDS. Beneath each panel is the unweighted
average of each characteristic across the given set of colleges. Averages weighted by undergraduate enrollment are very similar.
40
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
f
/
e
d
u
e
d
p
a
r
t
i
c
e
-
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
f
.
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
Benjamin Castleman and Joshua Goodman
Table A.2.
Covariate Balance Test
(1)
Female
(2)
Low
income
(3)
(4)
(5)
(6)
Hispanic
Asian
White
Other
(7)
ESL
(8)
LEP
(10)
(9)
Special
Vocational
education Education
Panel A: 2010—14 Cohorts
Eligible (BW = 1.5)
N
Eligible (BW = 1.0)
N
0.027 −0.010 −0.074**
(0.033)
(0.032)
(0.043)
0.031 −0.017 −0.016
(0.014)
(0.019)
(0.021)
0.035
(0.037)
0.026 −0.005
(0.023)
(0.021)
0.030
(0.020)
0.025 −0.015 −0.047
(0.041)
(0.040)
(0.052)
0.014 −0.030 −0.021
(0.018)
(0.020)
(0.023)
0.023
(0.049)
0.005 −0.004
(0.026)
(0.025)
0.033
(0.023)
4,992
3,780
Control mean
0.69
0.75
0.37
0.05
0.08
0.05
0.39
0.07
0.07
0.17
Panel B: 2010—12 Cohorts
Eligible (BW = 1.5)
N
Eligible (BW = 1.0)
N
0.016 −0.038 −0.077
(0.047)
(0.039)
(0.050)
0.025
(0.023)
0.013 −0.022 −0.031
(0.039)
(0.026)
(0.030)
0.033 −0.014
(0.021)
(0.025)
0.079**
(0.035)
0.054 −0.056 −0.075
(0.057)
(0.048)
(0.054)
0.014
(0.028)
0.005 −0.028 −0.051
(0.047)
(0.031)
(0.029)
0.018 −0.001
(0.021)
(0.028)
0.093**
(0.041)
2,730
2,100
Control mean
0.67
0.72
0.40
0.02
0.09
0.12
0.40
0.05
0.11
0.16
Notes: Robust standard errors clustered by distance from the GPA threshold are in parentheses. Coefficients come from regressions of the
listed covariate on an indicator for GPA eligibility, distance from the GPA threshold, the interaction of those two, and high school class fixed
effects, using a bandwidth (BW) of 1.5 and 1.0 GPA points. Panel A includes the high school classes of 2010—14, and panel B includes the
classes of 2010—12. Covariates tested are all indicators, including in columns 7—10 English as a second language, limited English proficiency,
special education, and vocational education status. Also listed is the mean value of each covariate for students with GPAs between 2.3 and
2.5.
**p < 0.05.
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
/
/
f
e
d
u
e
d
p
a
r
t
i
c
e
-
p
d
l
f
/
/
/
/
/
1
3
1
1
9
1
6
9
2
0
2
6
e
d
p
_
a
_
0
0
2
0
4
p
d
f
.
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
41