What topic do you need documentation on?
Transactions of the Association for Computational Linguistics, vol. 6, pp. 197–210, 2018. Action Editor: Hinrich Sch¨utze.
Transactions of the Association for Computational Linguistics, vol. 6, pp. 197–210, 2018. Action Editor: Hinrich Sch¨utze. Submission batch: 6/2017; Revision batch: 9/2017; Published 4/2018. 2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license. c (cid:13) KnowledgeCompletionforGenericsusingGuidedTensorFactorizationHanieSedghi∗GoogleBrainMountainView,CA,U.S.A.hsedghi@google.comAshishSabharwalAllenInstituteforArtificialIntelligence(AI2)Seattle,WA,U.S.A.AshishS@allenai.orgAbstractGivenaknowledgebaseorKBcontaining(noisy)factsaboutcommonnounsorgener-ics,suchas“alltreesproduceoxygen”or“someanimalsliveinforests”,weconsidertheproblemofinferringadditionalsuchfactsataprecisionsimilartothatofthestartingKB.SuchKBscapturegeneralknowledgeabouttheworld,andarecrucialforvariousappli-cationssuchasquestionanswering.Differ-entfromcommonlystudiednamedentityKBssuchasFreebase,genericsKBsinvolvequan-tification,havemorecomplexunderlyingreg-ularities,tendtobemoreincomplete,andvio-latethecommonlyusedlocallyclosedworldassumption(LCWA).WeshowthatexistingKBcompletionmethodsstrugglewiththisnewtask,andpresentthefirstapproachthatissuccessful.Ourresultsdemonstratethatex-ternalinformation,suchasrelationschemasandentitytaxonomies,ifusedappropriately,canbeasurprisinglypowerfultoolinthisset-ting.First,oursimpleyeteffectiveknowledgeguidedtensorfactorizationapproachachievesstate-of-the-artresultsontwogenericsKBs(80%precise)forscience,doublingtheirsizeat74%-86%precision.Second,ournoveltax-onomyguided,submodular,activelearningmethodforcollectingannotationsaboutrareentities(e.g.,oriole,abird)is6xmoreeffec-tiveatinferringfurthernewfactsaboutthemthanmultipleactivelearningbaselines.1IntroductionWeconsidertheproblemofcompletingapartialknowledgebase(KB)containingfactsaboutgener-∗ThisworkwasdonewhiletheauthorwasaffiliatedwiththeAllenInstituteforArtificialIntelligence.icsorcommonnouns,representedasathird-ordertensorof(source,relation,target)triples,suchas(butterfly,pollinate,flower)and(thermometer,mea-sure,temperature).Suchfactscapturecommonknowledgethathumanshaveabouttheworld.Theyarearguablyessentialforintelligentagentswithhuman-likeconversationalabilitiesaswellasforspecificapplicationssuchasquestionanswering.Wedemonstratethatstate-of-the-artKBcompletionmethodsperformpoorlywhenfacedwithgener-ics,whileourstrategiesforincorporatingexternalknowledgeaswellasobtainingadditionalannota-tionsforrareentitiesprovidethefirstsuccessfulso-lutiontothischallengingnewtask.Sincegenericsrepresentclassesofsimilarindi-viduals,thetruthvalueyiofagenericstriplexi=(s,r,t)dependsonthequantificationsemanticsoneassociateswithsandt.Indeed,thesemanticsofgenericsstatementscanbeambiguous,evenself-contradictory,duetoculturalnorms.AsLeslie(2008)pointsout,‘duckslayeggs’isgenerallycon-sideredtruewhile‘ducksarefemale’,whichistrueforabroadersetofducksthantheformerstatement,isgenerallyconsideredfalse.Toavoiddeepphilosophicalissues,wefixapar-ticularmathematicalsemanticsthatisespeciallyrel-evantfornoisyfactsderivedautomaticallyfromtext:associateswithacategoricalquantificationfrom{all,some,none}andassociatet(implicitly)withsome.Forinstance,“allbutterfliespollinate(some)flower”and“someanimalslivein(some)forest”.Whenpresentingsuchtriplestohumans,theyarephrasedas:isittruethatallbutterfliespollinatesomeflower?Asanotationalshortcut,wetreatthequantificationofsasthecategoricallabelyiforthetriplexi.Forexample,(butterfly,pollinate,flower) l D o w n o a d e d f r o m h t t p : / / d i r e c t
Transactions of the Association for Computational Linguistics, vol. 6, pp. 159–172, 2018. Action Editor: Luke Zettlemoyer.
Transactions of the Association for Computational Linguistics, vol. 6, pp. 159–172, 2018. Action Editor: Luke Zettlemoyer. Submission batch: 10/2017; Revision batch: 12/2017; Published 3/2018. 2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license. c (cid:13) MappingtoDeclarativeKnowledgeforWordProblemSolvingSubhroRoy∗MassachusettsInstituteofTechnologysubhro@csail.mit.eduDanRoth∗UniversityofPennsylvaniadanroth@seas.upenn.eduAbstractMathwordproblemsformanaturalabstrac-tiontoarangeofquantitativereasoningprob-lems,suchasunderstandingfinancialnews,sportsresults,andcasualtiesofwar.Solvingsuchproblemsrequirestheunderstandingofseveralmathematicalconceptssuchasdimen-sionalanalysis,subsetrelationships,etc.Inthispaper,wedevelopdeclarativeruleswhichgovernthetranslationofnaturallanguagede-scriptionoftheseconceptstomathexpres-sions.Wethenpresentaframeworkforin-corporatingsuchdeclarativeknowledgeintowordproblemsolving.Ourmethodlearnstomaparithmeticwordproblemtexttomathex-pressions,bylearningtoselecttherelevantdeclarativeknowledgeforeachoperationofthesolutionexpression.Thisprovidesawaytohandlemultipleconceptsinthesameprob-lemwhile,atthesametime,supportingin-terpretabilityoftheanswerexpression.Ourmethodmodelsthemappingtodeclarativeknowledgeasalatentvariable,thusremov-ingtheneedforexpensiveannotations.Exper-imentalevaluationsuggeststhatourdomainknowledgebasedsolveroutperformsallothersystems,andthatitgeneralizesbetterintherealisticcasewherethetrainingdataitisex-posedtoisbiasedinadifferentwaythanthetestdata.1IntroductionManynaturallanguageunderstandingsituationsre-quirereasoningwithrespecttonumbersorquanti-∗MostoftheworkwasdonewhentheauthorswereattheUniversityofIllinois,UrbanaChampaign.ties–understandingfinancialnews,sportsresults,orthenumberofcasualtiesinabombing.Mathwordproblemsformanaturalabstractiontoalotofthesequantitativereasoningproblems.Conse-quently,therehasbeenagrowinginterestindevel-opingautomatedmethodstosolvemathwordprob-lems(Kushmanetal.,2014;Hosseinietal.,2014;RoyandRoth,2015).ArithmeticWordProblemMrs.Hiltbakedpieslastweekendforaholidaydin-ner.Shebaked16pecanpiesand14applepies.Ifshewantstoarrangeallofthepiesinrowsof5pieseach,howmanyrowswillshehave?Solution(16+14)/5=6MathConceptneededforEachOperationFigure1:Anexamplearithmeticwordproblemanditssolution,alongwiththeconceptsrequiredtogenerateeachoperationofthesolutionUnderstandingandsolvingmathwordproblemsinvolvesinterpretingthenaturallanguagedescrip-tionofmathematicalconcepts,aswellasunder-standingtheirinteractionwiththephysicalworld.ConsidertheelementaryschoollevelarithmeticwordproblemshowninFig1.Tosolvetheprob-lem,oneneedstounderstandthat“applepies”and“pecanpies”arekindsof“pies”,andhence,the l D o w n o a d e d f r o m h t t p : / / d i r e c t
Transactions of the Association for Computational Linguistics, vol. 6, pp. 133–144, 2018. Action Editor: Stefan Riezler.
Transactions of the Association for Computational Linguistics, vol. 6, pp. 133–144, 2018. Action Editor: Stefan Riezler. Submission batch: 6/2017; Revision batch: 9/2017; Published 2/2018. 2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license. c (cid:13) LearningRepresentationsSpecializedinSpatialKnowledge:LeveragingLanguageandVisionGuillemCollellDepartmentofComputerScienceKULeuven3001Heverlee,Belgiumgcollell@kuleuven.beMarie-FrancineMoensDepartmentofComputerScienceKULeuven3001Heverlee,Belgiumsien.moens@cs.kuleuven.beAbstractSpatialunderstandingiscrucialinmanyreal-worldproblems,yetlittleprogresshasbeenmadetowardsbuildingrepresentationsthatcapturespatialknowledge.Here,wemoveonestepforwardinthisdirectionandlearnsuchrepresentationsbyleveragingataskconsistinginpredictingcontinuous2Dspa-tialarrangementsofobjectsgivenobject-relationship-objectinstances(e.g.,“catunderchair”)andasimpleneuralnetworkmodelthatlearnsthetaskfromannotatedimages.Weshowthatthemodelsucceedsinthistaskand,furthermore,thatitiscapableofpredictingcorrectspatialarrangementsforunseenob-jectsifeitherCNNfeaturesorwordembed-dingsoftheobjectsareprovided.Thediffer-encesbetweenvisualandlinguisticfeaturesarediscussed.Next,toevaluatethespatialrepresentationslearnedintheprevioustask,weintroduceataskandadatasetconsistinginasetofcrowdsourcedhumanratingsofspatialsimilarityforobjectpairs.WefindthatbothCNN(convolutionalneuralnetwork)featuresandwordembeddingspredicthumanjudgmentsofsimilaritywellandthatthesevectorscanbefurtherspecializedinspatialknowledgeifweupdatethemwhentrainingthemodelthatpredictsspatialarrangementsofobjects.Overall,thispaperpavesthewaytowardsbuildingdistributedspatialrepresen-tations,contributingtotheunderstandingofspatialexpressionsinlanguage.1IntroductionRepresentingspatialknowledgeisinstrumentalinanytaskinvolvingtext-to-sceneconversionsuchasrobotunderstandingofnaturallanguagecommands(Guadarramaetal.,2013;MoratzandTenbrink,2006)oranumberofrobotnavigationtasks.Despiterecentadvancesinbuildingspecializedrepresenta-tionsindomainssuchassentimentanalysis(Tangetal.,2014),semanticsimilarity/relatedness(Kielaetal.,2015)ordependencyparsing(Bansaletal.,2014),littleprogresshasbeenmadetowardsbuild-ingdistributedrepresentations(a.k.a.embeddings)specializedinspatialknowledge.Intuitively,onemayreasonablyexpectthatthemoreattributestwoobjectsshare(e.g.,size,func-tionality,etc.),themorelikelytheyaretoexhibitsimilarspatialarrangementswithrespecttootherobjects.Leveragingthisintuition,weforeseethatvisualandlinguisticrepresentationscanbespatiallyinformativeaboutunseenobjectsastheyencodefeatures/attributesofobjects(CollellandMoens,2016).Forinstance,withouthavingeverseenan“elephant”before,butonlya“horse”,onewouldprobablydevisethe“elephant”carryingthe“hu-man”thanotherwise,justbyconsideringtheirsizeattribute.Similarly,onecaninferthata“tablet”anda“book”willshowsimilarspatialpatterns(usuallyonatable,insomeone’shands,etc.)althoughtheybarelyshowanyvisualresemblance—yettheyaresimilarinsizeandfunctionality.Inthispaperwesystematicallystudyhowinformativevisualandlin-guisticfeatures—intheformofconvolutionalneuralnetwork(CNN)featuresandwordembeddings—areaboutthespatialbehaviorofobjects.Animportantgoalofthisworkistolearndis-tributedrepresentationsspecializedinspatialknowl-edge.Asavehicletolearnspatialrepresentations, l D o w n o a d e d f r o m h t t p : / / d i r e c t
Transactions of the Association for Computational Linguistics, vol. 6, pp. 121–132, 2018. Action Editor: Ani Nenkova.
Transactions of the Association for Computational Linguistics, vol. 6, pp. 121–132, 2018. Action Editor: Ani Nenkova. Submission batch: 11/2016; Revision batch: 3/2017; Published 2/2018. 2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license. c (cid:13) ConversationModelingonRedditUsingaGraph-StructuredLSTMVictoriaZayatsElectricalEngineeringDepartmentUniversityofWashingtonvzayats@uw.eduMariOstendorfElectricalEngineeringDepartmentUniversityofWashingtonostendor@uw.eduAbstractThispaperpresentsanovelapproachformod-elingthreadeddiscussionsonsocialmediausingagraph-structuredbidirectionalLSTM(long-shorttermmemory)whichrepresentsbothhierarchicalandtemporalconversationstructure.InexperimentswithataskofpredictingpopularityofcommentsinRedditdiscussions,theproposedmodeloutperformsanode-independentarchitecturefordifferentsetsofinputfeatures.Analysesshowabene-fittothemodeloverthefullcourseofthedis-cussion,improvingdetectioninbothearlyandlatestages.Further,theuseoflanguagecueswiththebidirectionaltreestateupdateshelpswithidentifyingcontroversialcomments.1IntroductionSocialmediaprovidesaconvenientandwidelyusedplatformfordiscussionsamongusers.Whenthecomment-responselinksarepreserved,thosecon-versationscanberepresentedinatreestructurewherecommentsrepresentnodes,therootistheoriginalpost,andeachnewreplytoapreviouscom-mentisaddedasachildofthatcomment.Someexamplesofpopularserviceswithtree-likestruc-turesincludeFacebook,Reddit,Quora,andStack-Exchange.Figure1showsanexampleconversa-tiononReddit,wherebiggernodesindicatehigherupvotingofacomment.1InserviceslikeTwitter,1Thetoolhttps://whichlight.github.io/reddit-network-viswasusedtoobtainthisvisualiza-tion.Figure1:VisualizationofasamplethreadonReddit.tweetsandtheirretweetscanalsobeviewedasform-ingatreestructure.Whentimestampsareavail-ablewithacontribution,thenodesofthetreecanbeorderedandannotatedwiththatinformation.Thetreestructureisusefulforseeinghowadiscussionunfoldsintodifferentsubtopicsandshowingdiffer-encesinthelevelofactivityindifferentbranchesofthediscussion.Predictingpopularityofcommentsinsocialme-diaisataskofgrowinginterest.Popularityhasbeendefinedintermsofthevolumeofthere-sponse,butwhenthesocialmediaplatformhasamechanismforreaderstolikeordislikecom-ments(or,upvote/downvote),thenthedifferenceinpositive/negativevotesprovidesamoreinformativescoreforpopularityprediction.Thisdefinitionof l D o w n o a d e d f r o m h t t p : / / d i r e c t
Transactions of the Association for Computational Linguistics, vol. 6, pp. 107–119, 2018. Action Editor: Ivan Titov.
Transactions of the Association for Computational Linguistics, vol. 6, pp. 107–119, 2018. Action Editor: Ivan Titov. Submission batch: 6/2017; Revision batch: 9/2017; Published 2/2018. c(cid:13)2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license. EvaluatingtheStabilityofEmbedding-basedWordSimilaritiesMariaAntoniakCornellUniversitymaa343@cornell.eduDavidMimnoCornellUniversitymimno@cornell.eduAbstractWordembeddingsareincreasinglybeingusedasatooltostudywordassociationsinspecificcorpora.However,itisunclearwhethersuchembeddingsreflectenduringpropertiesoflan-guageoriftheyaresensitivetoinconsequentialvariationsinthesourcedocuments.Wefindthatnearest-neighbordistancesarehighlysen-sitivetosmallchangesinthetrainingcorpusforavarietyofalgorithms.Forallmethods,includingspecificdocumentsinthetrainingsetcanresultinsubstantialvariations.Weshowthattheseeffectsaremoreprominentforsmallertrainingcorpora.Werecommendthatusersneverrelyonsingleembeddingmodelsfordistancecalculations,butratheraverageovermultiplebootstrapsamples,especiallyforsmallcorpora.1IntroductionWordembeddingsareapopulartechniqueinnaturallanguageprocessing(NLP)inwhichthewordsinavocabularyaremappedtolow-dimensionalvectors.Embeddingmodelsareeasilytrained—severalimple-mentationsarepubliclyavailable—andrelationshipsbetweentheembeddingvectors,oftenmeasuredviacosinesimilarity,canbeusedtoreveallatentseman-ticrelationshipsbetweenpairsofwords.Wordem-beddingsareincreasinglybeingusedbyresearchersinunexpectedwaysandhavebecomepopularinfieldssuchasdigitalhumanitiesandcomputationalsocialscience(Hamiltonetal.,2016;Heuser,2016;Phillipsetal.,2017).Embedding-basedanalysesofsemanticsimilaritycanbearobustandvaluabletool,butwefindthatstandardmethodsdramaticallyunder-representthevariabilityofthesemeasurements.Embeddingalgo-rithmsaremuchmoresensitivethantheyappeartofactorssuchasthepresenceofspecificdocuments,thesizeofthedocuments,thesizeofthecorpus,andevenseedsforrandomnumbergenerators.Ifusersdonotaccountforthisvariability,theirconclusionsarelikelytobeinvalid.Fortunately,wealsofindthatsimplyaveragingovermultiplebootstrapsamplesissufficienttoproducestable,reliableresultsinallcasestested.NLPresearchinwordembeddingshassofarfo-cusedonadownstream-centeredusecase,wheretheendgoalisnottheembeddingsthemselvesbutperformanceonamorecomplicatedtask.Forexam-ple,wordembeddingsareoftenusedasthebottomlayerinneuralnetworkarchitecturesforNLP(Ben-gioetal.,2003;Goldberg,2017).Theembeddings’trainingcorpus,whichisselectedtobeaslargeaspossible,isonlyofinterestinsofarasitgeneralizestothedownstreamtrainingcorpus.Incontrast,otherresearcherstakeacorpus-centeredapproachanduserelationshipsbetweenem-beddingsasdirectevidenceaboutthelanguageandcultureoftheauthorsofatrainingcorpus(Bolukbasietal.,2016;Hamiltonetal.,2016;Heuser,2016).Embeddingsareusedasiftheyweresimulationsofasurveyaskingsubjectstofree-associatewordsfromqueryterms.Unlikethedownstream-centeredapproach,thecorpus-centeredapproachisbasedondirecthumananalysisofnearestneighborstoembed-dingvectors,andthetrainingcorpusisnotsimplyanoff-the-shelfconveniencebutratherthecentralobjectofstudy. l D o w n o a d e d f r o m h t t p : / / d i r e c t . m
Transactions of the Association for Computational Linguistics, vol. 6, pp. 91–106, 2018. Action Editor: Alexander Clark.
Transactions of the Association for Computational Linguistics, vol. 6, pp. 91–106, 2018. Action Editor: Alexander Clark. Submission batch: 7/2017; Revision batch: 10/2017; Published 2/2018. 2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license. c (cid:13) TowardsEvaluatingNarrativeQualityInStudentWritingSwapnaSomasundaran1,MichaelFlor1,MartinChodorow2HillaryMolloy3BinodGyawali1LauraMcCulla11EducationalTestingService,660RosedaleRoad,Princeton,NJ08541,USA2HunterCollegeandtheGraduateCenter,CUNY,NewYork,NY10065,USA3EducationalTestingService,90NewMontgomeryStreet,SanFrancisco,CA94105,USA{ssomasundaran,mflor,hmolloy,bgyawali,LMcCulla}@ets.orgmartin.chodorow@hunter.cuny.eduAbstractThisworklaysthefoundationforautomatedassessmentsofnarrativequalityinstudentwriting.Wefirstmanuallyscoreessaysfornarrative-relevanttraitsandsub-traits,andmeasureinter-annotatoragreement.Wethenexplorelinguisticfeaturesthatareindicativeofgoodnarrativewritingandusethemtobuildanautomatedscoringsystem.Experimentsshowthatourfeaturesaremoreeffectiveinscoringspecificaspectsofnarrativequalitythanastate-of-the-artfeatureset.1IntroductionNarrative,whichincludespersonalexperiencesandstories,realorimagined,isamediumofexpressionthatisusedfromtheveryearlystagesofachild’slife.Narrativesarealsoemployedinvariouscapac-itiesinschoolinstructionandassessment.Forex-ample,theCommonCoreStateStandards,aned-ucationalinitiativeintheUnitedStatesthatdetailsrequirementsforstudentknowledgeingradesK-12,employsliterature/narrativesasoneofitsthreelanguageartsgenres.Withtheincreasedfocusonautomatedevaluationofstudentwritingineduca-tionalsettings(Adams,2014),automatedmethodsforevaluatingnarrativeessaysatscalearebecomingincreasinglyimportant.Automatedscoringofnarrativeessaysisachal-lengingarea,andonethathasnotbeenexploredex-tensivelyinNLPresearch.Previousworkonauto-matedessayscoringhasfocusedoninformational,argumentative,persuasiveandsource-basedwritingconstructs(StabandGurevych,2017;NguyenandLitman,2016;Farraetal.,2015;Somasundaranetal.,2014;BeigmanKlebanovetal.,2014;ShermisandBurstein,2013).Similarly,operationalessayscoringengines(AttaliandBurstein,2006;Elliot,2003)aregearedtowardsevaluatinglanguageprofi-ciencyingeneral.Inthiswork,welaytheground-workandpresentthefirstresultsforautomatedscor-ingofnarrativeessays,focusingonnarrativequality.Oneofthechallengesinnarrativequalityanal-ysisisthescarcityofscoredessaysinthisgenre.Wedescribeadetailedmanualannotationstudyonscoringstudentessaysalongmultipledimensionsofnarrativequality,suchasnarrativedevelopmentandnarrativeorganization.UsingascoringrubricadaptedfromtheU.S.CommonCoreStateStan-dards,weannotated942essayswrittenfor18differ-entessay-promptsbystudentsfromthreedifferentgradelevels.Thisdatasetprovidesavarietyofstorytypesandlanguageproficiencylevels.Wemeasuredinter-annotatoragreementtounderstandreliabilityofscoringstoriesfortraits(e.g.,development)aswellassub-traits(e.g.,plotdevelopmentandtheuseofnarrativetechniques).Anumberoftechniquesforwritinggoodstoriesaretargetedbythescoringrubrics.Weimplementedasystemforautomaticallyscoringdifferenttraitsofnarratives,usinglinguisticfeaturesthatcapturesomeofthosetechniques.Weinvestigatedtheeffec-tivenessofeachfeatureforscoringnarrativetraitsandanalyzedtheresultstoidentifysourcesoferrors.Themaincontributionsofthisworkareasfol-lows:(1)Tothebestofourknowledge,thisisthefirstdetailedannotationstudyonscoringnarra-tiveessaysfordifferentaspectsofnarrativequality. l D o w n o a d e d f r o m h t t p : / / d i r e c t
Transactions of the Association for Computational Linguistics, vol. 6, pp. 77–89, 2018. Action Editor: Patrick Pantel.
Transactions of the Association for Computational Linguistics, vol. 6, pp. 77–89, 2018. Action Editor: Patrick Pantel. Submission batch: 6/2017; Revision batch: 10/2017; Published 2/2018. 2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license. c (cid:13) EventTimeExtractionwithaDecisionTreeofNeuralClassifiersNilsReimers†,NazaninDehghani‡∗,IrynaGurevych††UbiquitousKnowledgeProcessingLab(UKP)andResearchTrainingGroupAIPHESDepartmentofComputerScience,TechnischeUniversit¨atDarmstadt‡SchoolofElectricalandComputerEngineering,UniversityofTehranwww.ukp.tu-darmstadt.deAbstractExtractingtheinformationfromtextwhenaneventhappenedischallenging.Documentsdonotonlyreportoncurrentevents,butalsoonpasteventsaswellasonfutureevents.Often,therelevanttimeinformationforaneventisscatteredacrossthedocument.Inthispaperwepresentanovelmethodtoauto-maticallyanchoreventsintime.Toourknowl-edgeitisthefirstapproachthattakestempo-ralinformationfromthecompletedocumentintoaccount.Wecreatedadecisiontreethatappliesneuralnetworkbasedclassifiersatitsnodes.Weusethistreetoincrementallyinfer,inastepwisemanner,atwhichtimeframeaneventhappened.WeevaluatetheapproachontheTimeBank-EventTimeCorpus(Reimersetal.,2016)achievinganaccuracyof42.0%com-paredtoaninter-annotatoragreement(IAA)of56.7%.Foreventsthatspanoverasingledayweobserveanaccuracyimprovementof33.1pointscomparedtothestate-of-the-artCAEVOsystem(Chambersetal.,2014).Withoutre-training,weapplythismodeltotheSemEval-2015Task4onautomatictimelinegenerationandachieveanimprovementof4.01pointsF1-scorecomparedtothestate-of-the-art.Ourcodeispublicallyavailable.11IntroductionKnowingwhenaneventhappenedisusefulforalotofusecases.Examplesareinthefieldsoftime-awareinformationretrieval,textsummarization,automatedtimelinegeneration,andautomaticknowledgebasepopulation.Manyfactsinaknowledgebaseare∗Duringauthor’sinternshipintheresearchtraininggroupAIPHESatUKPLab,TUDarmstadt.1https://github.com/ukplab/tacl2017-event-time-extractiononlytrueforacertaintimeperiod,forexamplethepresidencyofaperson.Hence,thepopulationofaknowledgebasecanhighlybenefitfromhighqualityeventandeventtime2extraction(Surdeanu,2013).Inherenttoeventsistheconnectiontotime.Allan(2002)definesaneventas“somethingthathappensatsomespecifictimeandplace”.Thechallengesforautomaticeventtimeextractionaremanifold.Thetemporalinformationinnewsarticleswhichstateswhenaneventhappenedis,inmostcases,notinthesameorinneighboringsentenceswiththeevent(Reimersetal.,2016).Itcanbementionedfarbeforetheeventorfaraftertheevent.Evenworse,formorethan60%ofevents,thespecificdayatwhichtheeventhappenedisnotmentioned.However,fromtheworldknowledgeandcausalrelations,thereadercaninferalotoftemporalinformationaboutthoseeventsandcanofteninferthattheeventhappenedbeforeoraftersomespecificpointintime.Inthispaperwedescribeanewclassifierforauto-maticeventtimeextraction.WeusetheTimeBank-EventTimeCorpus(Reimersetal.,2016)totrainandevaluateourproposedarchitecture.Incontrasttoothercorporaontemporalrelations,theannota-tionoftheTimeBank-EventTimeCorpusdoesnotmakerestrictionswhere,andinwhichform,tempo-ralinformationforaneventmustbeprovided.Theannotatorswereallowedtotakethewholedocumentintoaccountandwereaskedtoanswer,tothebestoftheirability,thequestionatwhichdateortimeperiodtheeventhappened.Theeventtimeannotationforsomesampleeventsisshowninthefollowing:•Hewas[sent]1980-05-26intospaceonMay26,2Wewillrefertothetemporalinformationwhenaneventhappenedaseventtime. l D o w n o a d e d f r o m h t t p : / / d i r e c t
Transactions of the Association for Computational Linguistics, vol. 6, pp. 33–48, 2018. Action Editor: Regina Barzilay.
Transactions of the Association for Computational Linguistics, vol. 6, pp. 33–48, 2018. Action Editor: Regina Barzilay. Submission batch: 5/2016; Revision batch: 10/2016; Published 1/2018. 2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license. c (cid:13) JointSemanticSynthesisandMorphologicalAnalysisoftheDerivedWordRyanCotterellDepartmentofComputerScienceJohnsHopkinsUniversityryan.cotterell@jhu.eduHinrichSch¨utzeCISLMUMunichinquiries@cislmu.orgAbstractMuchlikesentencesarecomposedofwords,wordsthemselvesarecomposedofsmallerunits.Forexample,theEnglishwordquestionablycanbeanalyzedasquestion+able+ly.However,thisstructuraldecompositionoftheworddoesnotdirectlygiveusasemanticrepresentationoftheword’smeaning.Sincemorphologyobeystheprincipleofcompositionality,thesemanticsofthewordcanbesystematicallyderivedfromthemeaningofitsparts.Inthiswork,weproposeanovelprobabilisticmodelofwordformationthatcapturesboththeanalysisofawordwintoitsconstituentsegmentsandthesynthesisofthemeaningofwfromthemean-ingsofthosesegments.Ourmodeljointlylearnstosegmentwordsintomorphemesandcomposedistributionalsemanticvectorsofthosemorphemes.WeexperimentwiththemodelonEnglishCELEXdataandGermanDErivBase(Zelleretal.,2013)data.WeshowthatjointlymodelingsemanticsincreasesbothsegmentationaccuracyandmorphemeF1bybetween3%and5%.Additionally,weinvestigatedifferentmodelsofvectorcompo-sition,showingthatrecurrentneuralnetworksyieldanimprovementoversimpleadditivemodels.Finally,westudythedegreetowhichtherepresentationscorrespondtoalinguist’snotionofmorphologicalproductivity.1IntroductionInmostlanguages,wordsdecomposefurtherintosmallerunits,termedmorphemes.Forexample,theEnglishwordquestionablycanbeanalyzedasquestion+able+ly.Thisstructuraldecompositionoftheword,however,byitselfisnotasemanticrep-resentationoftheword’smeaning;1wefurtherre-quireanaccountofhowtosynthesizethemeaningfromthedecomposition.Fortunately,words—justlikephrases—toalargeextentobeytheprincipleofcompositionality:thesemanticsofthewordcanbesystematicallyderivedfromthemeaningofitsparts.2Inthiswork,weproposeanoveljointprob-abilisticmodelofwordformationthatcapturesbothstructuraldecompositionofawordwintoitscon-stituentsegmentsandthesynthesisofw’smeaningfromthemeaningofthosesegments.Morphologicalsegmentationisastructuredpre-dictiontaskthatseekstobreakawordupintoitsconstituentmorphemes.Theoutputsegmentationhasbeenshowntoaidadiversesetofapplications,suchasautomaticspeechrecognition(Afifyetal.,2006),keywordspotting(Narasimhanetal.,2014),machinetranslation(CliftonandSarkar,2011)andparsing(SeekerandC¸etino˘glu,2015).Incontrasttomuchofthispriorwork,wefocusonsupervisedsegmentation,i.e.,weprovidethemodelwithgoldsegmentationsduringtrainingtime.Insteadofsur-1Therearemanydifferentlinguisticandcomputationaltheo-riesforinterpretingthestructuraldecompositionofaword.Forexample,un-oftensignifiesnegationanditseffectonsemanticscanthenbemodeledbytheoriesbasedonlogic.Thisworkad-dressesthequestionofstructuraldecompositionandsemanticsynthesisinthegeneralframeworkofdistributionalsemantics.2Morphologicalresearchintheoreticalandcomputationallinguisticsoftenfocusesonnoncompositionalorlesscom-positionalphenomena—simplybecausecompositionalderiva-tionposesfewerinterestingresearchproblems.Itisalsotruethat—justasmanyfrequentmultiwordunitsarenotcompletelycompositional—manyfrequentderivations(e.g.,refusal,fit-ness)arenotcompletelycompositional.Anindicationthatnon-lexicalizedderivationsareusuallycompositionalisthefactthatstandarddictionarieslikeOUPeditors(2010)listderivationalaffixeswiththeircompositionalmeaning,withoutahedgethattheycanalsooccuraspartofonlypartiallycompositionalforms.SeealsoHaspelmathandSims(2013),§5.3.6. l D o w n o a d e d f r o m h t t p : / / d i r e c t
Transactions of the Association for Computational Linguistics, vol. 6, pp. 17–31, 2018. Action Editor: Ani Nenkova.
Transactions of the Association for Computational Linguistics, vol. 6, pp. 17–31, 2018. Action Editor: Ani Nenkova. Submission batch: 7/17; Revision batch: 11/2017; Published 1/2018. 2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license. c (cid:13) MultipleInstanceLearningNetworksforFine-GrainedSentimentAnalysisStefanosAngelidisandMirellaLapataInstituteforLanguage,CognitionandComputationSchoolofInformatics,UniversityofEdinburgh10CrichtonStreet,EdinburghEH89ABs.angelidis@ed.ac.uk,mlap@inf.ed.ac.ukAbstractWeconsiderthetaskoffine-grainedsenti-mentanalysisfromtheperspectiveofmulti-pleinstancelearning(MIL).Ourneuralmodelistrainedondocumentsentimentlabels,andlearnstopredictthesentimentoftextseg-ments,i.e.sentencesorelementarydiscourseunits(EDUs),withoutsegment-levelsupervi-sion.Weintroduceanattention-basedpolar-ityscoringmethodforidentifyingpositiveandnegativetextsnippetsandanewdatasetwhichwecallSPOT(asshorthandforSegment-levelPOlariTyannotations)forevaluatingMIL-stylesentimentmodelslikeours.Experimen-talresultsdemonstratesuperiorperformanceagainstmultiplebaselines,whereasajudge-mentelicitationstudyshowsthatEDU-levelopinionextractionproducesmoreinformativesummariesthansentence-basedalternatives.1IntroductionSentimentanalysishasbecomeafundamentalareaofresearchinNaturalLanguageProcessingthankstotheproliferationofuser-generatedcontentintheformofonlinereviews,blogs,internetforums,andsocialmedia.Aplethoraofmethodshavebeenpro-posedintheliteraturethatattempttodistillsenti-mentinformationfromtext,allowingusersandser-viceproviderstomakeopinion-drivendecisions.Thesuccessofneuralnetworksinavarietyofap-plications(Bahdanauetal.,2015;LeandMikolov,2014;Socheretal.,2013)andtheavailabilityoflargeamountsoflabeleddatahaveledtoanin-creasedfocusonsentimentclassification.Super-visedmodelsaretypicallytrainedondocuments(JohnsonandZhang,2015a;JohnsonandZhang,2015b;Tangetal.,2015;Yangetal.,2016),sen-tences(Kim,2014),orphrases(Socheretal.,2011;[Rating:??]IhadaverymixedexperienceatTheStand.Theburgerandfriesweregood.Thechocolateshakewasdivine:richandcreamy.Thedrive-thruwashorrible.Ittookusatleast30minutestoorderwhentherewereonlyfourcarsinfrontofus.Wecomplainedaboutthewaitandgotahalf–heartedapology.Iwouldgobackbecausethefoodisgood,butmyonlyhesitationisthewait.Summary+Theburgerandfriesweregood+Thechocolateshakewasdivine+Iwouldgobackbecausethefoodisgood–Thedrive-thruwashorrible–Ittookusatleast30minutestoorderFigure1:AnEDU-basedsummaryofa2-out-of-5starreviewwithpositiveandnegativesnippets.Socheretal.,2013)annotatedwithsentimentla-belsandusedtopredictsentimentinunseentexts.Coarse-graineddocument-levelannotationsarerel-ativelyeasytoobtainduetothewidespreaduseofopiniongradinginterfaces(e.g.,starratingsac-companyingreviews).Incontrast,theacquisitionofsentence-orphrase-levelsentimentlabelsre-mainsalaboriousandexpensiveendeavordespiteitsrelevancetovariousopinionminingapplica-tions,e.g.,detectingorsummarizingconsumeropin-ionsinonlineproductreviews.Theusefulnessoffiner-grainedsentimentanalysisisillustratedintheexampleofFigure1,wheresnippetsofopposingpo-laritiesareextractedfroma2-starrestaurantreview.Although,asawhole,thereviewconveysnegativesentiment,aspectsofthereviewer’sexperiencewereclearlypositive.Thisgoeslargelyunnoticedwhenfocusingsolelyonthereview’soverallrating.Inthiswork,weconsidertheproblemofsegment-levelsentimentanalysisfromtheperspectiveofMultipleInstanceLearning(MIL;Keeler,1991). l D o w n o a d e d f r o m h t t p : / / d i r e c t
CORRIGENDUM: MEASURING UNCERTAINTY
CORRIGENDUM: MEASURING UNCERTAINTY AND ITS IMPACT ON THE ECONOMY Andrea Carriero, Todd E. Clark, and Massimiliano Marcellino* Original article: Carriero, Andrea, Todd E. Clark, and Massimiliano Marcellino, “Measuring Uncertainty and Its Impact on the Economy,” this REVIEW 100:5 (2018), 799–815. 10.1162/rest_a_00693 Abstract—Carriero, Clark, and Marcellino (2018, CCM2018) used a large BVAR model with a factor structure to stochastic volatility to produce an estimate of time-varying
UNRAVELING AMBIGUITY AVERSION∗
UNRAVELING AMBIGUITY AVERSION∗ Ilke Aydogan† Lo¨ıc Berger‡ Valentina Bosetti§ Abstract We report the results of two experiments designed to better understand the mechanisms driving decision-making under ambiguity. We elicit individual prefer- ences over different sources of uncertainty, entailing different degrees of complexity, from subjects with different sophistication levels. We show that (1) ambiguity aversion is robust to sophistication, but the strong relationship previously reported between
MEASURING “GROUP COHESION”
MEASURING “GROUP COHESION” TO REVEAL THE POWER OF SOCIAL RELATIONSHIPS IN TEAM PRODUCTION SIMON GÄCHTER, CHRIS STARMER AND FABIO TUFANO* University of Nottingham and University of Leicester** 30 November 2022 We introduce “group cohesion” to study the economic relevance of social relationships in team production. We operationalize measurement of group cohesion, adapting the “oneness scale” from psychology. A series of experiments, including a pre-registered replication,
Alcohol, violence and injury-induced mortality:
Alcohol, violence and injury-induced mortality: Evidence from a modern-day prohibition* Kai Barron1, Charles D.H. Parry2,4, Debbie Bradshaw2,3, Rob Dorrington3, Pam Groenewald2, Ria Laubscher2, and Richard Matzopoulos2,3 1WZB Berlin 2South African Medical Research Council 3University of Cape Town 4Stellenbosch University Abstract This paper evaluates the impact of a sudden and unexpected nation-wide alcohol sales ban in South Africa. We find that this policy causally reduced injury-induced
Assortative Matching of Exporters and Importers*
Assortative Matching of Exporters and Importers* Yoichi Sugita† Kensuke Teshima‡ Enrique Seira§ July 2021 Abstract This paper studies how exporting and importing firms match based on their ca- pability by investigating the change in such exporter–importer matching during trade liberalization. During the recent liberalization on the Mexico-US textile/apparel trade, exporters and importers often switch their main partners as well as change trade vol- umes. We
Impulse Purchases, Gun Ownership, and Homicides: Evidence from a Firearm Demand
Impulse Purchases, Gun Ownership, and Homicides: Evidence from a Firearm Demand Shock1 Christoph Koenig2 David Schindler3 July 23, 2021 Abstract: Do firearm purchase delay laws reduce aggregate homicide levels? Using variation from a 6-month countrywide gun demand shock in 2012/2013, we show that U.S. states with legislation preventing immediate handgun purchases experienced smaller increases in handgun sales. Our findings indicate that this is likely driven
THE DYNAMIC EFFECTS OF TAX AUDITS
THE DYNAMIC EFFECTS OF TAX AUDITS Arun Advani, William Elming, and Jonathan Shaw* Abstract—We study the effects of audits on long run compliance behavior using a random audit program covering more than 53,000 tax returns. We find that audits raise reported tax liabilities for five years after audit, effects are longer-lasting for more stable sources of income, and only individuals found to have made errors
The Review of Economics and Statistics
The Review of Economics and Statistics VOL. CV JULY 2023 NUMBER 4 LONG-TERM CARE HOSPITALS: A CASE STUDY IN WASTE Liran Einav, Amy Finkelstein, and Neale Mahoney* Abstract—There is substantial waste in U.S. healthcare but little consensus on how to combat it. We identify one source of waste: long-term care hos- pitals (LTCHs). Using the entry of LTCHs into hospital markets in an event study
DISCRIMINATION, NARRATIVES, AND FAMILY HISTORY: AN EXPERIMENT
DISCRIMINATION, NARRATIVES, AND FAMILY HISTORY: AN EXPERIMENT WITH JORDANIAN HOST AND SYRIAN REFUGEE CHILDREN Kai Barron, Heike Harmgart, Steffen Huck, Sebastian O. Schneider, and Matthias Sutter* Abstract—We measure the prevalence of discrimination between Jordanian host and Syrian refugee children attending school in Jordan. Using a simple sharing experiment, we find only a small degree of out-group discrimination. However, Jordanian children with Palestinian roots do not