Getting BART to Ride the Idiomatic Train: Learning to Represent Idiomatic Expressions Ziheng Zeng and Suma Bhat Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Champaign, IL USA {zzeng13, spbhat2}@illinois.edu Abstract Idiomatic…
Suchkategorieangehen
DP-Parse: Finding Word Boundaries from Raw Speech
DP-Parse: Finding Word Boundaries from Raw Speech with an Instance Lexicon Robin Algayres1,3,5 Tristan Ricoul3 Julien Karadayi3 Hugo Laurenc¸on3 Salah Zaiem3 Abdelrahman Mohamed2 Benoˆıt Sagot4 Emmanuel Dupoux1,3,4,5 Meta AI Research, France1, Meta AI Research, USA2,…
On Decoding Strategies for Neural Text Generators
On Decoding Strategies for Neural Text Generators Gian Wiher Clara Meister Ryan Cotterell ETH Z¨urich, Schweiz {gian.wiher, clara.meister, ryan.cotterell}@inf.ethz.ch Abstract When generating text from probabilistic mod- els, the chosen decoding strategy has a pro- found…
How to Dissect a Muppet: The Structure of
How to Dissect a Muppet: The Structure of Transformer Embedding Spaces Timothee Mickus∗ University of Helsinki, Finland timothee.mickus @helsinki.fi Denis Paperno Utrecht University, The Netherlands d.paperno@uu.nl Mathieu Constant Universit´e de Lorraine, CNRS,ATILF, France Mathieu.Constant @univ-lorraine.fr…
Compositional Generalization in Multilingual
Compositional Generalization in Multilingual Semantic Parsing over Wikidata Ruixiang Cui, Rahul Aralikatte, Heather Lent, and Daniel Hershcovich Department of Computer Science University of Copenhagen, Denmark {rc, rahul, hcl, dh}@di.ku.dk Abstract Semantic parsing (SP) allows humans…
Learning English with Peppa Pig
Learning English with Peppa Pig Mitja Nikolaus Aix-Marseille University, France mitja.nikolaus@univ-amu.fr Afra Alishahi Tilburg University, The Netherlands a.alishahi@uvt.nl Grzegorz Chrupała Tilburg University, The Netherlands grzegorz@chrupala.me Abstract Recent computational models of the acqui- sition of spoken…
Temporal Effects on Pre-trained Models for Language Processing Tasks
Temporal Effects on Pre-trained Models for Language Processing Tasks Oshin Agarwal University of Pennsylvania, USA oagarwal@seas.upenn.edu Ani Nenkova Adobe Research, USA nenkova@adobe.com Abstract Keeping the performance of language tech- nologies optimal as time passes is…
Dependency Parsing with Backtracking using
Dependency Parsing with Backtracking using Deep Reinforcement Learning Franck Dary, Maxime Petit, Alexis Nasr Aix Marseille Univ, Universit´e de Toulon, CNRS, LIS, Marseille, Frankreich {franck.dary,maxime.petit,alexis.nasr}@lis-lab.fr Abstract Greedy algorithms for NLP such as transition- based parsing…
A Survey of Text Games for Reinforcement Learning Informed by
A Survey of Text Games for Reinforcement Learning Informed by Natural Language Philip Osborne Department of Computer Science University of Manchester United Kingdom philiposbornedata@gmail.com Heido N˜omm Department of Computer Science University of Manchester United Kingdom…
Reducing Conversational Agents’ Overconfidence Through
Reducing Conversational Agents’ Overconfidence Through Linguistic Calibration Sabrina J. Mielke1,2 Arthur Szlam2 Emily Dinan2 Y-Lan Boureau2 1Department of Computer Science, Johns Hopkins Universität, USA 2Facebook AI Research, USA sjmielke@jhu.edu {aszlam,edinan,ylan}@fb.com Abstract While improving neural dialogue…