Transacciones de la Asociación de Lingüística Computacional, 1 (2013) 139–150. Editor de acciones: Joakim Nivré.

Transacciones de la Asociación de Lingüística Computacional, 1 (2013) 139–150. Editor de acciones: Joakim Nivré.

Submitted 12/2012; Revised 3/2013; Publicado 5/2013. C
(cid:13)

2013 Asociación de Lingüística Computacional.

EfficientStackedDependencyParsingbyForestRerankingKatsuhikoHayashiandShuheiKondoandYujiMatsumotoGraduateSchoolofInformationScienceNaraInstituteofScienceandTechnology8916-5,Takayama,Ikoma,Nara630-0192,Japan{katsuhiko-h,shuhei-k,matsu}@is.naist.jpAbstractThispaperproposesadiscriminativefor-estrerankingalgorithmfordependencypars-ingthatcanbeseenasaformofefficientstackedparsing.Adynamicprogrammingshift-reduceparserproducesapackedderiva-tionforestwhichisthenscoredbyadiscrim-inativereranker,usingthe1-besttreeoutputbytheshift-reduceparserasguidefeaturesinadditiontothird-ordergraph-basedfeatures.Toimproveefficiencyandaccuracy,thispa-peralsoproposesanovelshift-reduceparserthateliminatesthespuriousambiguityofarc-standardtransitionsystems.TestingontheEnglishPennTreebankdata,forestrerankinggaveastate-of-the-artunlabeleddependencyaccuracyof93.12.1IntroductionTherearetwomainapproachesofdata-drivende-pendencyparsing–oneisgraph-basedandtheotheristransition-based.Inthegraph-basedapproach,globaloptimiza-tionalgorithmsfindthehighest-scoringtreewithlocallyfactoredmodels(McDonaldetal.,2005).Whilethird-ordergraph-basedmodelsachievestate-of-the-artaccuracy,ithasO(n4)timecomplexityforasentenceoflengthn.Recently,someprun-ingtechniqueshavebeenproposedtoimprovetheefficiencyofthird-ordermodels(RushandPetrov,2012;ZhangandMcDonald,2012).Thetransition-basedapproachusuallyemploystheshift-reduceparsingalgorithmwithlinear-timecomplexity(Nivre,2008).Itgreedilychoosesthetransitionwiththehighestscoreandtheresult-ingtransitionsequenceisnotalwaysgloballyop-timal.Thebeamsearchalgorithmimprovespars-ingflexibilityindeterministicparsing(ZhangandClark,2008;ZhangandNivre,2011),anddy-namicprogrammingmakesbeamsearchmoreeffi-cient(HuangandSagae,2010).Thereisalsoanalternativeapproachthatin-tegratesgraph-basedandtransition-basedmodels(SagaeandLavie,2006;ZhangandClark,2008;NivreandMcDonald,2008;Martinsetal.,2008).Martinsetal.(2008)formulatedtheirapproachasstackingofparserswheretheoutputofthefirst-stageparserisprovidedtothesecondasguidefeatures.Inparticular,theyusedatransition-basedparserforthefirststageandagraph-basedparserforthesecondstage.Themaindrawbackofthisapproachisthattheefficiencyofthetransition-basedparserissacri-ficedbecausethesecond-stageemploysfullparsing.Thispaperproposesanefficientstackedpars-ingmethodthroughdiscriminativererankingwithhigher-ordergraph-basedfeatures,whichworksontheforestsoutputbythefirst-stagedynamicpro-grammingshift-reduceparserandintegratesnon-localfeaturesefficientlywithcube-pruning(HuangandChiang,2007).Theadvantagesofourmethodareasfollows:•Unliketheconventionalstackingapproach,thefirst-stageshift-reduceparserprunesthesearchspaceofthesecond-stagegraph-basedparser.•Inadditiontoguidefeatures,thesecond-stagegraph-basedparsercanemploythescoresofthefirst-stageparserwhichcannotbeincorpo-

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu

/
t

a
C
yo
/

yo

a
r
t
i
C
mi

pag
d

F
/

d
oh

i
/

.

1
0
1
1
6
2

/
t

yo

a
C
_
a
_
0
0
2
1
6
1
5
6
6
6
2
9

/

/
t

yo

a
C
_
a
_
0
0
2
1
6
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
8
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

140

axiom(c0):0:(0,1,w0):∅goal(c2n):2norte:(0,norte,s0):∅shift:statepz}|{:(,j,sd|sd−1|…|s1|s0):ℓ+1:(j,j+1,sd−1|sd−2|…|s0|wj):(pag)iDescargar PDF