Transacciones de la Asociación de Lingüística Computacional, 2 (2014) 155–168. Editor de acciones: Janice Wiebe.
Submitted 6/2013; Revised 11/2013; Publicado 4/2014. C
(cid:13)
2014 Asociación de Lingüística Computacional.
Senti-LSSVM:Sentiment-OrientedMulti-RelationExtractionwithLatentStructuralSVMLizhenQuMaxPlanckInstituteforInformaticslqu@mpi-inf.mpg.deYiZhangNuanceCommunicationsyi.zhang@nuance.comRuiWangDFKIGmbHmars198356@hotmail.comLiliJiangMaxPlanckInstituteforInformaticsljiang@mpi-inf.mpg.deRainerGemullaMaxPlanckInstituteforInformaticsrgemulla@mpi-inf.mpg.deGerhardWeikumMaxPlanckInstituteforInformaticsweikum@mpi-inf.mpg.deAbstractExtractinginstancesofsentiment-orientedre-lationsfromuser-generatedwebdocumentsisimportantforonlinemarketinganalysis.Un-likepreviouswork,weformulatethisextrac-tiontaskasastructuredpredictionproblemanddesignthecorrespondinginferenceasanintegerlinearprogram.OurlatentstructuralSVMbasedmodelcanlearnfromtrainingcor-porathatdonotcontainexplicitannotationsofsentiment-bearingexpressions,anditcansi-multaneouslyrecognizeinstancesofbothbi-nary(polarity)andternary(comparative)re-lationswithregardtoentitymentionsofin-terest.Theempiricalevaluationshowsthatourapproachsignificantlyoutperformsstate-of-the-artsystemsacrossdomains(camerasandmovies)andacrossgenres(reviewsandforumposts).Thegoldstandardcorpusthatwebuiltwillalsobeavaluableresourceforthecommunity.1IntroductionSentiment-orientedrelationextraction(Choietal.,2006)isconcernedwithrecognizingsentimentpo-laritiesandcomparativerelationsbetweenentitiesfromnaturallanguagetext.Identifyingsuchrela-tionsoftenrequiressyntacticandsemanticanalysisatbothsentenceandphraselevel.Mostpriorworkonsentimentanalysisconsidereitheri)subjectivesentencedetection(YuandKübler,2011),ii)po-larityclassification(JohanssonandMoschitti,2011;Wilsonetal.,2005),oriii)comparativerelationidentification(JindalandLiu,2006;Ganapathib-hotlaandLiu,2008).Inpractice,sin embargo,differ-enttypesofsentiment-orientedrelationsfrequentlycoexistindocuments.Inparticular,wefoundthatmorethan38%ofthesentencesinourtestcorpuscontainmorethanonetypeofrelations.Theiso-latedanalysisapproachisinappropriatebecausei)itsacrificesacuracybyignoringtheintricateinterplayamongdifferenttypesofrelations;ii)itcouldleadtoconflictingpredictionssuchasestimatingarelationcandidateasbothnegativeandcomparative.There-fore,inthispaper,weidentifyinstancesofbothsen-timentpolaritiesandcomparativerelationsforenti-tiesofinterestsimultaneously.Weassumethatallthementionsofentitiesandattributesaregiven,andentitiesaredisambiguated.Itisawidelyusedas-sumptionwhenevaluatingamoduleinapipelinesystemthattheoutputsofprecedingmodulesareerror-free.Tothebestofourknowledge,theonlyexist-ingsystemcapableofextractingbothcomparisonsandsentimentpolaritiesisarule-basedsystempro-posedbyDingetal.(2009).Wearguethatitisbettertotacklethetaskbyusingaunifiedmodelwithstructuredoutputs.Itallowsustoconsiderasetofcorrelatedrelationinstancesjointlyandchar-acterizetheirinteractionthroughasetofsoftandhardconstraints.Forexample,wecanencodecon-straintstodiscourageanattributetoparticipateinapolarityrelationandacomparativerelationatthesametime.Asaresult,thesystemextractsasetofcorrelatedinstancesofsentiment-orientedrelationsfromagivensentence.Forexample,withthesen-tenceaboutthecameraCanon7D,“Thesensorisgreat,butthepriceishigherthanNikonD7000.”theexpectedoutputispositive(Canon7D,sensor)
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
1
7
3
1
5
6
6
8
3
4
/
/
t
yo
a
C
_
a
_
0
0
1
7
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
9
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
156
andpreferred(NikonD7000,Canon7D,textit-price).Sin embargo,constructingafullyannotatedtrain-ingcorpusforthistaskislabor-intensiveandre-quiresstronglinguisticbackground.Weminimizethisoverheadbyapplyingasimplifiedannotationscheme,inwhichannotatorsmarkmentionsofen-titiesandattributes,disambiguatetheentities,andlabelinstancesofrelationsforeachsentence.Basedonthenewscheme,wehavecreatedasmallSenti-mentRelationGraph(SRG)corpusforthedomainsofcamerasandmovies,whichsignificantlydiffersfromthecorporausedinpriorwork(WeiandGulla,2010;Kessleretal.,2010;Topraketal.,2010;Wiebeetal.,2005;HuandLiu,2004)inthefollow-ingways:i)bothsentimentpolaritiesandcompar-ativerelationsareannotated;ii)allmentioneden-titiesaredisambiguated;andiii)nosubjectiveex-pressionsareannotated,unlesstheyarepartofentitymentions.Thenewannotationschemeraisesanewchal-lengeforlearningalgorithmsinthattheyneedtoautomaticallyfindtextualevidencesforeachanno-tatedrelationduringtraining.Forexample,withthesentence“IliketheRebelalittlebetter,butthatisanotherpricejump”,simplyassigningasentiment-bearingexpressiontothenearestrelationcandidateisinsufficient,especiallywhenthesentimentisnotexplicitlyexpressed.Inthispaper,weproposeSENTI-LSSVM,alatentstructuralSVMbasedmodelforsentiment-orientedrelationextraction.SENTI-LSSVMisappliedtofindthemostlikelysetoftherelationinstancesexpressedinagivensentence,wherethelatentvariablesareusedtoassignthemostappropriatetextualevidencestotherespectiveinstances.Insummary,thecontributionsofthispaperarethefollowing:•WeproposeSENTI-LSSVM:thefirstunifiedsta-tisticalmodelwiththecapabilityofextractinginstancesofbothbinaryandternarysentiment-orientedrelations.•Wedesignatask-specificintegerlinearpro-gramming(ILP)formulationforinference.•WeconstructanewSRGcorpusasavaluableassetfortheevaluationofsentimentrelationextraction.•Weconductextensiveexperimentswithon-linereviewsandforumposts,showingthatSENTI-LSSVMmodelcaneffectivelylearnfromatrainingcorpuswithoutexplicitlyannotatedsubjectiveexpressionsandthatitsperformancesignificantlyoutperformsstate-of-the-artsys-tems.2RelatedWorkThereareampleworksonanalyzingsentimentpo-laritiesandentitycomparisons,butthemajorityofthemstudiedthetwotasksinisolation.Mostpriorapproachesforfine-grainedsentimentanalysisfocusonpolarityclassification.Super-visedapproachesonexpression-levelanalysisre-quiretheannotationofsentiment-bearingexpres-sionsastrainingdata(Jinetal.,2009;ChoiandCardie,2010;JohanssonandMoschitti,2011;YessenalinaandCardie,2011;WeiandGulla,2010).Sin embargo,thecorrespondingannotationpro-cessistime-consuming.Althoughsentence-levelannotationsareeasiertoobtain,theanalysisatthislevelcannotcopewithsentencesconveyingrelationsofmultipletypes(McDonaldetal.,2007;TäckströmandMcDonald,2011;Socheretal.,2012).Lexicon-basedapproachesrequirenotrainingdata(Kuetal.,2006;KimandHovy,2006;Godboleetal.,2007;Dingetal.,2008;PopescuandEtzioni,2005;Liuetal.,2005)butsufferfrominferiorperformance(Wil-sonetal.,2005;Quetal.,2012).Incontrast,ourmethodrequiresnoannotationofsentiment-bearingexpressionsfortrainingandcanpredictbothsenti-mentpolaritiesandcomparativerelations.Sentiment-orientedcomparativerelationshavebeenstudiedinthecontextofuser-generateddis-course(JindalandLiu,2006;GanapathibhotlaandLiu,2008).Approachesrelyonlinguisticallymoti-vatedrulesandassumetheexistenceofindependentkeywordsinsentenceswhichindicatecomparativerelations.Therefore,thesemethodsfallshortofex-tractingcomparativerelationsbasedondomainde-pendentinformation.BothJohanssonandMoschitti(2011)andWuetal.(2011)formulatefine-grainedsentimentanaly-sisasalearningproblemwithstructuredoutputs.However,theyfocusonlyonpolarityclassification
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
1
7
3
1
5
6
6
8
3
4
/
/
t
yo
a
C
_
a
_
0
0
1
7
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
9
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
157
ofexpressionsandrequireannotationofsentiment-bearingexpressionsfortrainingaswell.WhileILPhasbeenpreviouslyappliedforinfer-enceinsentimentanalysis(ChoiandCardie,2009;SomasundaranandWiebe,2009;Wuetal.,2011),ourtaskrequiresacompleteILPreformulationdueto1)theabsenceofannotatedsentimentexpressionsand2)theconstraintsimposedbythejointextrac-tionofbothsentimentpolarityandcomparativere-lations.3SystemOverviewThissectiongivesanoverviewofthewholesystemforextractingsentiment-orientedrelationinstances.Priortopresentingthesystemarchitecture,wein-troducetheessentialconceptsandthedefinitionsoftwokindsofdirectedhypergraphsastherepresen-tationofcorrelatedrelationinstancesextractedfromsentences.3.1ConceptsandDefinitionsEntity.Anentityisanabstractorconcretething,whichneedsnotbeofmaterialexistence.Anentityinthispaperreferstoeitheraproductorabrand.Attribute.Anattributeisanobjectcloselyassoci-atedwithorbelongingtoanentity,suchasthelensofdigitalcamera.Sentiment-OrientedRelation.Asentiment-orientedrelationiseitherasentimentpolarityoracomparativerelation,definedontuplesofentitiesandattributes.Asentimentpolarityrelationconveyseitherapositiveoranegativeattitudetowardsenti-tiesortheirattributes,whereasacomparativerela-tionindicatesthepreferenceofoneentityovertheotherentityw.r.t.anattribute.RelationInstance.Aninstanceofsentimentpolar-itytakestheformr(entidad,attribute)withr∈{pos-itive,negative},suchaspositive(Canon7D,sen-sor).Thepolarityinstancesexpressedintheformofunaryrelations,suchas“NikonD7000isex-cellent.”,aredenotedasbinaryrelationsr(entidad,entero),wheretheattributewholeindicatestheen-tityasawhole.Incontrast,aninstanceofcompar-ativerelationisintheformofpreferred{entidad,en-tity,attribute},e.g.preferred(Canon7D,NikonD7000,price).Forbrevity,werefertoaninstancesetofsentiment-orientedrelationsextractedfromasentenceasansSoR.Torepresenttheinstancesoftheremainingrelations,werepresentthemasother{entidad,attribute},suchastextitpartOf{rueda,auto}.Theserelationsincludeobjectiverelationsandthesubjectiverelationsotherthansentiment-orientedrelations.Mention-BasedRelationInstances.Amention-basedrelationinstancereferstoatupleofentitymentionswithacertainrelation.Thisconceptisin-troducedastherepresentationofinstancesinasen-tencebyreplacingentitieswiththecorrespondingentitymentions,suchaspositive(“CanonSD880i”,“wideangleview”).Figure1:AnexampleofMRG.Mention-BasedRelationGraph.Amention-basedrelationgraph(orMRG)representsacollectionofmention-basedrelationinstancesexpressedinasen-tence.AsillustratedinFigure1,anMRGisadi-rectedhypergraphG=hM,EiwithavertexsetMandanedgesetE.Avertexmi∈Mdenotesamentionofanentityoranattributeoccurringei-therwithinthesentenceorinitscontext.Wesaythatamentionisfromthecontextifitismentionedintheprevioussentenceorisanattributeimpliedinthecurrentsentence.Aninstanceofabinaryre-lationinanMRGtakestheformofabinaryedgeel=(mi,mamá),wheremiandmadenoteanen-titymentionandanattributementionrespectively,andthetypel∈{positivo,negative,otro}.Aternaryedgeelindicatingcomparativerelationisrepresentedasel=(mi,mj,mamá),wheretwoen-titymentionsmiandmjarecomparedwithrespecttotheattributementionma.Wedefinethetypel∈{mejor,worse}toindicatetwopossibledirec-tionsoftherelationandassumemioccursbeforemj.Asaresult,wehaveasetLoffiverelationtypes:positivo,negative,mejor,worseorother.Ac-cordingtothesedefinitions,theannotationsintheSRGcorpusareactuallyMRGsanddisambiguatedentities.Iftherearemultiplementionsreferringtothesameentity,annotatorsareaskedtochoosethe
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
1
7
3
1
5
6
6
8
3
4
/
/
t
yo
a
C
_
a
_
0
0
1
7
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
9
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
158
mostobviousonebecauseitsavesannotationtimeandislessdemandingfortheentityrecognitionanddiambiguationmodules.Figure2:AnexampleofeMRG.Thetextualevi-dencesarewrappedbygreendashedboxes.EvidentiaryMention-BasedRelationGraph.Anevidentiarymention-basedrelationgraph,coinedeMRG,extendsanMRGbyassociatingeachedgewithatextualevidencetosupportthecorrespondingrelationassertions(seeFigure2).Como consecuencia,anedgeinaneMRGisdenotedbyapair(a,C),wherearepresentsamention-basedrelationinstanceandcistheassociatedtextualevidence.Itisalsore-ferredtoasanevidentiaryedge.representedasel=(mi,mj,mamá),anMRGasanevidentiaryMRG(eMRG)andtheedgesofeMRGsasevidentiaryedges,asshowninFigure2.3.2SystemArchitectureFigure3:Systemarchitecture.AsillustratedbyFigure3,atthecoreofoursys-temistheSENTI-LSSVMmodel,whichextractssetsofmention-basedrelationshipsintheformofeMRGsfromsentences.Foragivensentencewithknownentitymentions,weselectallpossiblementionsetsasrelationcandidates,whereeachsetincludesatleastoneentitymention.Thenweassociateeachrelationcandidatewithasetofconstituentsorthewholesentenceasthetextualevidencecandidates(cf.Section6.1).Después,theinferencecom-ponentaimstofindthemostlikelyeMRGfromallpossiblecombinationsofmention-basedrelationin-stancesandtheirtextualevidences(cf.Section6.2).TherepresentationeMRGischosenbecauseitchar-acterizesexactlythemodeloutputsbylettingeachedgecorrespondtoaninstanceofmention-basedre-lationandtheassociatedtextualevidence.Finally,themodelparametersofthismodelarelearnedbyanonlinealgorithm(cf.Section7).Sinceinstancesetsofsentiment-orientedrelations(sSoRs)aretheexpectedoutputs,wecanobtainsSoRsfromMRGsbyusingasimplerule-basedal-gorithm.Thealgorithmessentiallymapsthemen-tionsfromanMRGintoentitiesandattributesinansSoRandlabelthecorrespondingtupleswiththere-lationtypesoftheedgesfromanMRG.Forinstancesofcomparativerelation,thelabelbetterorworseismappedtotherelationtypepreferred.4SENTI-LSSVMModelThetaskofsentiment-orientedrelationextractionistodeterminethemostlikelysSoRinasentence.SincesSoRsarederivedfromthecorrespondingMRGsasdescribedinSection3,thetaskisreducedtofindthemostlikelyMRGforeachsentence.SinceanMRGiscreatedbyassigningrelationtypestoasubsetofallrelationcandidates,whicharepossibletuplesofmentionswithunknownrelationtypes,thenumberofMRGscanbeextremelyhigh.Totacklethetask,onesolutionistoemployanedge-factoredlinearmodelintheframeworkofstructuralSVM(Martinsetal.,2009;Tsochantaridisetal.,2004).Themodelsuggeststhatabagoffea-turesshouldbespecifiedforeachrelationcandidate,andthenthemodelpredictsthemostlikelycandi-datesetsalongwiththeirrelationtypestoformtheoptimalMRGs.Asweobserved,forarelationcan-didate,themostinformativefeaturesarethewordsnearitsentitymentionsintheoriginaltext.How-
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
1
7
3
1
5
6
6
8
3
4
/
/
t
yo
a
C
_
a
_
0
0
1
7
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
9
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
159
alguna vez,ifwerepresentacandidatebyallthesewords,itisverylikelythattheinstancesofdifferentrelationtypesshareoverlysimilarfeatures,becauseamen-tionisofteninvolvedinmorethanonerelationcan-didate,asshowninFigure2.Asaconsequence,theinstancesofdifferentrelationsrepresentedbyoverlysimilarfeaturescaneasilyconfusethelearningalgo-rithm.Thus,itiscriticaltoselectproperconstituentsorsentencesastextualevidencesforeachrelationcandidateinbothtrainingandtesting.Consequently,wedividethetaskofsentiment-orientedrelationextractionintotwosubtasks:i)identifyingthemostlikelyMRGs;ii)assigningpropertextualevidencestoeachedgeofMRGstosupporttheirrelationassertions.Itisdesirabletocarryoutthetwosubtasksjointlyasthesetwosub-taskscouldenhanceeachother.First,theidentifi-cationofrelationtypesrequirespropertextualev-idences;segundo,thesoftandhardconstraintsim-posedbythecorrelatedrelationinstancesfacilitatetherecognitionofthecorrespondingtextualevi-dences.SincetheeMRGsarecreatedbyattachingeveryMRGwithasetoftextualevidences,tacklingthetwosubtaskssimultaneouslyisequivalenttose-lectingthemostlikelyeMRGfromasetofeMRGcandidates.ItischallengingbecauseourSRGcorpusdoesnotcontainanyannotationoftextualevidences.Formally,letXdenotethesetofallavailablesen-tences,andwedefiney∈Y(X)(x∈X)asthesetoflabelededgesofanMRGandY=∪x∈XY(X).Sincetheassignmentsoftextualevidencesarenotobserved,anassignmentofevidencestoyisde-notedbyalatentvariableh∈H(X)andH=∪x∈XH(X).Entonces(y,h)correspondstoaneMRG,y(a,C)∈(y,h)isalabelededgeaattachedwithatextualevidencec.GivenalabeleddatasetD={(x1,y1),…,(xn,en)}∈(X×Y)norte,weaimtolearnadiscriminantfunctionf:X→Y×HthatoutputstheoptimaleMRG(y,h)∈Y(X)×H(X)foragivensentencex.Duetotheintroductionoflatentvariables,weadoptthelatentstructuralSVM(YuandJoachims,2009)forstructuralclassification.Ourdiscriminantfunctionisdefinedasf(X)=argmax(y,h)∈Y(X)×H(X)β>Φ(X,y,h)(1)whereΦ(X,y,h)isthefeaturefunctionofaneMRG(y,h)andβisthecorrespondingweightvector.Toensuretractability,wealsoemployedge-basedfactorizationforourmodel.LetMpdenoteasetofentitymentionsandyr(mi)beasetofedgeslabeledwithsentiment-orientedrelationsincidenttomi,thefactorizationofΦ(X,y,h)isgivenasΦ(X,y,h)=X(a,C)∈(y,h)Φe(X,a,C)+(2)Xmi∈MpXa,a0∈yr(mi),a6=a0Φc(a,a0)whereΦe(X,a,C)isalocaledgefeaturefunctionforalabelededgeaattachedwithatextualevidencecandΦc(a,a0)isafeaturefunctioncapturingco-occurrenceoftwolabelededgesamianda0miinci-denttoanentitymentionmi.5FeatureSpaceThefollowingfeaturesareusedinthefeaturefunc-tions(Equation2):Unigrams:Asmentionedbefore,atextualevi-denceattachedtoanedgeinMRGiseitheraword,phraseorsentence.Weconsideralllemmatizedun-igramsinthetextualevidenceasunigramfeatures.Context:Sincewebusersusuallyexpressrelatedsentimentsaboutthesameentityacrosssentenceboundaries,wedescribethesentimentflowusingasetofcontextualbinaryfeatures.Forexample,ifen-tityAismentionedinboththeprevioussentenceandthecurrentsentence,asetofcontextualbinaryfea-turesareusedtoindicateallpossiblecombinationsofthecurrentandthepreviousmentionedsentiment-orientedrelationsregardingtoentityA.Co-occurrence:Wehavementionedtheco-occurrencefeatureinEquation2,indicatedbyΦc(a,a0).Itcapturestheco-occurrenceoftwola-belededgesincidenttothesameentitymention.Notethattheco-occurrencefeaturefunctioniscon-sideredonlyifthereisacontrastconjunctionsuchas“but”betweenthenon-sharedentitymentionsinci-denttothetwolabelededges.Senti-predictors:Followingtheideaof(Quetal.,2012),weencodethepredictionresultsfromtherule-basedphrase-levelmulti-relationpredic-tor(Dingetal.,2009)andfromthebag-of-opinionspredictor(Quetal.,2010)asfeaturesbasedonthetextualevidence.Theoutputofthefirstpredictorisanintegervalue,whiletheoutputofthesecondpredictorisasentimentrelation,suchas“positive”,
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
1
7
3
1
5
6
6
8
3
4
/
/
t
yo
a
C
_
a
_
0
0
1
7
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
9
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
160
“negative”,“better”or“worse”.Wemaptherela-tionaloutputsintointegervaluesandthenencodetheoutputsfrombothpredictorsassenti-predictorfeatures.Others:Thecommonlyusedpart-of-speechtagsarealsoincludedasfeatures.Moreover,foranedgecandidate,asetofbinaryfeaturesareusedtodenotethetypesoftheedgeanditsentitymentions.Forin-stance,abinaryfeatureindicateswhetheranedgeisabinaryedgerelatedtoanentitymentionedincon-text.Tocharacterizethesyntacticdependenciesbe-tweentwoadjacententitymentions,weusethepathinthedependencytreebetweentheheadsofthecor-respondingconstituents,thenumberofwordsandothermentionsin-betweenasfeatures.Additionally,ifthetextualevidenceisaconstituent,itsfeaturew.r.t.anedgeisthedependencypathtotheclos-estmentionoftheedgethatdoesnotoverlapwiththisconstituent.6StructuralInferenceInordertofindthebesteMRGforagivensentencewithawelltrainedmodel,weneedtodeterminethemostlikelyrelationtypeforeachrelationcandi-dateandsupportthecorrespondingassertionswithpropertextualevidences.WeformulatethistaskasanIntegerLinearProgramming(ILP).Insteadofconsideringallconstituentsofasentence,weempir-icallyselectasubsetastextualevidencesforeachrelationcandidate.6.1TextualEvidenceCandidatesSelectionTextualevidencesareselectedbasedonthecon-stituenttreesofsentencesparsedbytheStanfordparser(KleinandManning,2003).Foreachmen-tioninasentence,wefirstlocateaconstituentinthetreewiththemaximaloverlapbyJaccardsim-ilarity.Startingfromthisconstituent,weconsidertwotypesofcandidates:typeIcandidatesarecon-stituentsatthehighestlevelwhichcontainneitheranywordofanothermentionnoranycontrastcon-junctionssuchas“but”;typeIIcandidatesarecon-stituentsatthehighestlevelwhichcoverexactlytwomentionsofanedgeanddonotoverlapwithanyothermentions.Forabinaryedgeconnectinganen-titymentionandanattributemention,weconsideratypeIcandidatestartingfromtheattributemen-tion.Forabinaryedgeconnectingtwoentitymen-tions,weconsidertypeIcandidatesstartingfrombothmentions.Moreover,foracomparativeternaryedge,weconsiderbothtypeIandtypeIIcandidatesstartingfromtheattributemention.Thisstrategyisbasedonourobservationthatthesecandidatesof-tencoverthemostimportantinformationw.r.t.thecoveredentitymentions.6.2ILPFormulationWeformulatetheinferenceproblemoffindingthebesteMRGasanILPproblemduetoitsconvenientintegrationofbothsoftandhardconstraints.Giventhemodelparametersβ,wereformulatethescoreofaneMRGinthediscriminantfunction(1)asfollows,β>Φ(X,y,h)=X(a,C)∈(y,h)saczac+Xmi∈MpXa,a0∈yr(mi),a6=a0saa0zaa0wheresac=β>Φe(X,a,C)denotesthescoreofalabelededgeaattachedwithatextualevidencec,saa0=β>Φc(a,a0)istheedgeco-occurrencescore,thebinaryvariablezacindicatesthepresenceorab-senceofthecorrespondingedge,andzaa0indicatesiftwoedgesco-occurr.AsnoteveryedgesetcanformaneMRG,werequirethatavalideMRGshouldsatisfyasetoflinearconstraints,whichformourconstraintspace.Thenfunction(1)isequivalenttomaxz∈Bs>z+µzds.t.Azητ≤dz,η,τ∈BwhereB=2SwithS={0,1},andηandτareauxiliarybinaryvariablesthathelpdefinethecon-straintspace.TheaboveoptimizationproblemtakesexactlytheformofanILPbecauseboththecon-straintsandtheobjectivefunctionarelinear,andallvariablestakeonlyintegervalues.Inthefollowing,weconsidertwotypesofcon-straintspace,1)aneMRGwithonlybinaryedgesand2)aneMRGwithbothbinaryandternaryedges.
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
1
7
3
1
5
6
6
8
3
4
/
/
t
yo
a
C
_
a
_
0
0
1
7
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
9
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
161
eMRGwithonlyBinaryEdges:AneMRGhasonlybinaryedgesifasentencecontainsnoattributementionoratmostoneentitymention.Weexpectthateachedgehasonlyonerelationtypeandissup-portedbyasingletextualevidence.Tofacilitatetheformulationofconstraints,weintroduceηeltode-notethepresenceorabsenceofalabelededgeel,andηectoindicateifatextualevidencecisassignedtoanunlabelededgee.Thenthebinaryvariableforthecorrespondingevidentiaryedgezelc=ηec∧ηel,wheretheILPformulationofconjunctioncanbefoundin(Martinsetal.,2009).LetCedenotethesetoftextualevidencecandi-datesofanunlabelededgee.Theconstraintofatmostonetextualevidenceperedgeisformulatedas:Xc∈Ceηec≤1(3)Onceatextualevidenceisassignedtoanedge,theirrelationlabelsshouldmatchandthenumberoflabelededgesmustagreewiththenumberofat-tachedtextualevidences.Further,weassumethatatextualevidencecconveysatmostonerelationsothatanevidencewillnotbeassignedtotherelationsofdifferenttypes,whichisthemainproblemforthestructuralSVMbasedmodel.Letηclindicatethatthetextualevidencecislabeledbytherelationtypel.Thecorrespondingconstraintsareexpressedas,Xl∈Leηel=Xc∈Ceηec;zelc≤ηcl;Xl∈Lηcl≤1whereLedenotesthesetofallpossiblelabelsforanunlabelededgee,andListhesetofallrelationtypesofMRGs(cf.Section3).Inordertoavoidatextualevidencebeingoverlyreusedbymultiplerelationcandidates,wefirstpe-nalizetheassignmentofatextualevidencectoalabelededgeabyassociatingthecorrespondingzacwithafixednegativecost−µintheobjectivefunc-tion.Thentheselectionofonetextualevidenceperedgeaisencouragedbyassociatingµtozdcintheobjectivefunction,wherezdc=We∈ScηecandScisthesetofedgesthatthetextualevidencecservesasacandidate.Thedisjunctionzdcisexpressedas:zdc≥ηe,e∈Sczdc≤Xe∈Scηe(a)Binaryedgestructure(b)TernaryedgestructureFigure4:Alternativestructuresassociatedwithanattributemention.Thissoftconstraintnotonlyencouragesonetextualevidenceperedge,butalsokeepsiteligibleformul-tipleassignments.Foranytwolabelededgeaanda0incidenttothesameentitymention,theedge-to-edgeco-occurrenceisdescribedbyzca,a0=za∧za0.eMRGwithbothBinaryandTernaryEdges:Iftherearemorethanoneentitymentionsandatleastoneattributementioninasentence,aneMRGcanpotentiallyhavebothbinaryandternaryedges.Inthiscase,weassumethateachmentionofattributescanparticipateeitherinbinaryrelationsorinternaryrelations.Theassumptionholdsinmorethan99.9%ofthesentencesinourSRGcorpus,thuswedescribeitasasetofhardconstraints.Geometrically,theas-sumptioncanbevisualizedastheselectionbetweentwoalternativestructuresincidenttothesameat-tributemention,asshowninFigure4.Notethat,inthebinaryedgestructure,weincludenotonlytheedgesincidenttotheattributementionbutalsotheedgebetweenthetwoentitymentions.LetSbmibethesetofallpossiblelabelededgesinabinaryedgestructureofanattributementionmi.Variableτbmi=Wel∈Sbmiηelindicateswhethertheattributementionisassociatedwithabinaryedgestructureornot.Inthesamemanner,weuseτtmi=Wel∈Stmiηeltoindicatetheassociationoftheanattributementionmiwithanternaryedgestruc-turefromthesetofallincidentternaryedgesStmi.Theselectionbetweentwoalternativestructuresis
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
1
7
3
1
5
6
6
8
3
4
/
/
t
yo
a
C
_
a
_
0
0
1
7
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
9
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
162
formulatedasτbmi+τtmi=1.Asthisinfluencesonlytheedgesincidenttoanattributemention,wekeepalltheconstraintsintroducedintheprevioussectionunchangedexceptforconstraint(3),whichismodifiedasXc∈Ceηec≤τbmi;Xc∈Ceηec≤τtmiTherefore,wecanhaveeitherbinaryedgesorternaryedgesforanattributemention.7LearningModelParametersGivenasetoftrainingsentencesD={(x1,y1),…,(xn,en)},thebestweightvec-torβofthediscriminantfunction(1)isfoundbysolvingthefollowingoptimizationproblem:minβ1nnXi=1[máximo(ˆy,ˆh)∈Y(X)×H(X)(β>Φ(X,ˆy,ˆh)+δ(ˆh,ˆy,y))−max¯h∈H(X)β>Φ(X,y,¯h)]+ρ|b|](4)whereδ(ˆh,ˆy,y)isalossfunctionmeasuringthedis-crepanciesbetweenaneMRG(y,¯h)withgoldstan-dardedgelabelsyandaneMRG(ˆy,ˆh)withinferredlabelededgesˆyandtextualevidencesˆh.Duetothesparsenatureofthelexicalfeatures,weapplyL1regularizertotheweightvectorβ,andthedegreeofsparsityiscontrolledbythehyperparameterρ.SincetheL1normintheaboveoptimizationproblemisnotdifferentiableatzero,weapplytheonlineforward-backwardsplitting(FOBOS)algo-rithm(DuchiandSinger,2009).Itrequirestwostepsforupdatingtheweightvectorβbyusingasingletrainingsentencexoneachiterationt.βt+12=βt−εt∆tβt+1=argminβ12kβ−βtk2+εtρ|b|where∆tisthesubgradientcomputedwithoutcon-sideringtheL1normandεtisthelearningrate.Foralabeledsentencex,∆t=Φ(X,ˆy∗,ˆh∗)−Φ(X,y,¯h∗),wherethefeaturefunctionsofthecorre-spondingeMRGsareinferredbysolving(ˆy∗,ˆh∗)=argmax(ˆh,ˆy)∈H(X)×Y(X)[β>Φ(X,ˆy,ˆh)+δ(ˆh,ˆy,y)]y(y,¯h∗)=argmax¯h∈H(X)β>Φ(X,y,¯h),asin-dicatedintheoptimizationproblem(4).Theformerinferenceproblemissimilartotheoneweconsideredintheprevioussectionexcepttheinclusionofthelossfunction.WeincorporatethelossfunctionintotheILPformulationbydefin-ingthelossbetweenanMRG(y,h)andagoldstan-dardMRGasthesumofper-edgecosts.Inourex-periments,weconsiderapositivecostϕforeachwronglylabelededgea,sothatifanedgeahasadifferentlabelfromthegoldstandard,weaddϕtothecoefficientsacofthecorrespondingvariablezacintheobjectivefunctionoftheILPformulation.Inaddition,sincethenon-positiveweightsofedgelabelsintheinitiallearningphraseoftenleadtoeMRGswithmanyunlabelededges,whichharmsthelearningperformance,wefixitbyaddingacon-straintfortheminimalnumberoflabelededgesinaneMRG,Xa∈AXc∈Caηac≥ζ(5)whereAisthesetofalllabelededgecandidatesandζdenotestheminimalnumberoflabelededges.Empirically,thebestwaytodetermineζistomakeitequaltothemaximalnumberoflabelededgesinaneMRGwiththerestrictionthatatex-tualevidencecanbeassignedtoatmostoneedge.ByconsideringalltheedgecandidatesAandallthetextualevidencecandidatesCastwovertexsetsinabipartitegraphˆG=hV=(A,C),Ei(withedgesinEindicatingwhichtextualevidencecanbeassignedtowhichedge),ζcorrespondstoexactlythesizeofamaximummatchingofthebipartitegraph1.TofindtheoptimaleMRG(y,¯h∗),forthegoldla-belkofeachedge,weconsiderthefollowingsetofconstraintsforinferencesincethelabelsoftheedgesareknownforthetrainingdata,Xc∈Ceηec≤1;ηec≤lckXk0∈Llck0≤1;Xe∈Scηec≤1Weincludealsothesoftconstraints,whichavoidatextualevidencebeingoverlyreusedbymultiplerelations,andtheconstraintssimilarto(5)toensureaminimalnumberoflabelededgesandaminimalnumberofsentiment-orientedrelations.1ItiscomputedbytheHopcroft-Karpalgorithm(HopcroftandKarp,1973)inourimplementation.
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
1
7
3
1
5
6
6
8
3
4
/
/
t
yo
a
C
_
a
_
0
0
1
7
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
9
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
163
8SRGCorpusForevaluationweconstructedtheSRGcorpus,whichintotalconsistsof1686manuallyannotatedonlinereviewsandforumpostsinthedigitalcameraandmoviedomains2.Foreachdomain,wemaintainasetofattributesandalistofentitynames.Theannotationschemeforthesentimentrepre-sentationassertsminimallinguisticknowledgefromourannotators.Byfocusingonthemeaningsofthesentences,theannotatorsmakedecisionsbasedontheirlanguageintuition,notrestrictedbyspecificsyntacticstructures.TakingtheexampleinFigure2,theannotatorsonlyneedtomarkthementionsofentitiesandattributesfromboththesentencesandthecontext,disambiguatethem,andlabel(“Canon7D”,“NikonD7000”,price)asworseand(“Canon7D”,“sensor”)aspositive,whereasinpriorwork,peoplehaveannotatedthesentiment-bearingexpres-sionssuchas“great”andlinkthemtotherespectiverelationinstancesaswell.Thisalsoenablesthemtoannotateinstancesofbothsentimentpolarityandcomparativerelaton,whichareconveyedbynotonlyexplicitsentiment-bearingexpressionslike“excel-lentperformance”,butalsofactualexpressionsim-plyingevaluationssuchas“The7Vhas10xopticalzoomandthe9Vhas16x.”.CameraMovieReviewsForumsReviewsForumspositive3861539879905negative165363529331comparison304803935Table1:DistributionofrelationinstancesinSRGcorpus.14annotatorsparticipatedintheannotationproject.Afterashorttrainingperiod,annotatorsworkedonrandomlyassigneddocumentsoneatatime.Forproductreviews,thesystemlistsallrel-evantinformationabouttheentityandtheprede-finedattributes.Forforumposts,thesystemshowsonlytheattributelist.Foreachsentenceinadoc-ument,theannotatorfirstdeterminesifitreferstoanentityofinterest.Ifnot,thesentenceismarked2The107camerareviewsarefrombestbuy.comandAma-zon.com;the667cameraforumpostsaredownloadedfromfo-rum.digitalcamerareview.com;the138moviereviewsand774forumpostsarefromimdb.comandboards.ierespectivelyasoff-topic.Otherwise,theannotatorwillidentifythemostobviousmentions,disambiguatethem,andmarktheMRGs.Weevaluatetheinter-annotatoragreementonsSoRsintermsofCohen’sKappa(κ)(cohen,1968).AnaverageKappavalueof0.698wasachievedonarandomlyselectedsetconsistingof412sentences.Table1showsthecorpusdistributionafternor-malizingthemintosSoRs.Cameraforumpostscon-tainthelargestproportionofcomparisonsbecausetheyaremainlyabouttherecommendationofdig-italcameras.Incontrast,webusersaremuchlessinterestedincomparingmovies,inbothreviewsandforums.Inallsubsets,positiverelationsplayadom-inantrolesincewebusersintendtoexpressmorepositiveattitudesonlinethannegativeones(PangandLee,2007).9ExperimentsThissectiondescribestheempiricalevaluationofSENTI-LSSVMtogetherwithtwocompetitivebase-linesontheSRGcorpus.9.1ExperimentalSetupWeimplementedarule-basedbaseline(DING-RULE)andastructuralSVM(Tsochantaridisetal.,2004)base(SENTI-SSVM)forcomparison.TheformersystemextendstheworkofDingetal.(2009),whichdesignedseverallinguistically-motivatedrulesbasedonasentimentpolaritylexi-conforrelationidentificationandassumesthereisonlyonetypeofsentimentrelationinasentence.Inourimplementation,wekeepalltherulesof(Dingetal.,2009)andaddonephrase-levelrulewhentherearemorethanonementioninasentence.Thead-ditionalruleassignssentiment-bearingwordsandnegatorstoitsnearestrelationcandidatesbasedontheabsolutesurfacedistancebetweenthewordsandthecorrespondingmentions.Inthiscase,thephrase-levelsentiment-orientedrelationsdependonlyontheassignedsentimentwordsandnegators.Thelat-tersystemisbasedonastructuralSVManddoesnotconsidertheassignmentoftextualevidencestorelationinstancesduringinference.Thetextualfea-turesofarelationcandidatearealllexicalandsen-timentpredictorfeatureswithinasurfacedistanceoffourwordsfromthementionsofthecandidate.
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
1
7
3
1
5
6
6
8
3
4
/
/
t
yo
a
C
_
a
_
0
0
1
7
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
9
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
164
De este modo,thisbaselinedoesnotneedtheinferencecon-straintsofSENTI-LSSVMfortheselectionoftextualevidences.Togainmoreinsightsintothemodel,wealsoevaluatethecontributionofindividualfea-turesofSENTI-LSSVM.Inaddition,toshowifidenti-fyingsentimentpolaritiesandcomparativerelationsjointlyworksbetterthantacklingeachtaskonitsown,wetrainSENTI-LSSVMforeachtaskseparatelyandcombinetheirpredictionsaccordingtocompat-ibilityrulesandthecorrespondinggraphscores.Foreachdomainandtextgenre,wewithheld15%documentsfordevelopmentandusetheremainingforcrossvalidation.Thehyperparametersofallsys-temsaretunedonthedevelopmentdatasets.ForallexperimentsofSENTI-LSSVM,weuseρ=0.0001fortheL1regularizerinEq.(4)andϕ=0.05forthelossfunction;andforSENTI-SSVM,ρ=0.0001andϕ=0.01.Sincetherelationtypeofoff-topicsentencesiscertainlyother,weevaluateallsystemswith5-foldcross-validationonlyontheon-topicsentencesintheevaluationdataset.SincethesamesSoRcanhaveseveralequivalentMRGsandtherela-tiontypeotherisnotofourinterest,weevaluatethesSoRsintermsofprecision,recallandF-measure.Allreportednumbersareaveragesoverthe5folds.9.2ResultsTable2showsthecompleteresultsofallsys-tems.HereourmodelSENTI-LSSVMoutperformedallbaselinesintermsoftheaverageF-measurescoresandrecallsbyalargemargin.TheF-measureonmoviereviewsisabout14%overthebestbase-line.Therule-basedsystemhashigherprecisionthanrecallinmostcases.However,simplyincreas-ingthecoverageofthedomainindependentsenti-mentpolaritylexiconmightleadtoworseperfor-mance(Taboadaetal.,2011)becausemanysen-timentorientedrelationsareconveyedbydomaindependentexpressionsandfactualexpressionsim-plyingevaluations,suchas“Thiscameradoesnothavemanualcontrol.”ComparedtoDING-RULE,SENTI-SSVMperformsbetterinthecameradomainbutworseforthemoviesduetomanymisclassi-ficationofnegativerelationinstancesasother.ItalsowronglypredictedmorepositiveinstancesasotherthanSENTI-LSSVM.Wefoundthattherecallsoftheseinstancesarelowbecausetheyoftenhaveoverlysimilarfeatureswiththeinstancesofthetypeotherlinkingtothesamementions.Theproblemgetsworseinthemoviedomainsincei)manysen-tencescontainnoexplicitsentiment-bearingwords;ii)thepriorpolarityofthesentiment-bearingwordsdonotagreewiththeircontextualpolarityinthesentences.Considerthefollowingexamplefromaforumpostaboutthemovie“SupermanReturns”:“HavealookatSuperman:theAnimatedSeriesorJusticeLeagueUnlimited…thatishowthechar-actersofSupermanandLexLuthorshouldbe.”.Incontrast,ourmodelminimizestheoverlappingfea-turesbyassigningthemtothemostlikelyrelationcandidates.Thisleadstosignificantlybetterper-formance.AlthoughSENTI-SSVMhaslowrecallforbothpositiveandnegativerelations,itachievesthehighestrecallforthecomparativerelationamongallsystemsinthemoviedomainandcamerareviews.Sincelessthan1%ofallinstancesareforcompara-tiverelationsinthesedocumentsetsandallmodelsaretrainedtooptimizetheoverallaccuracy,SENTI-LSSVMintendstotradeofftheminorityclassfortheoverallbetterperformance.Thisadvantagedisap-pearsonthecameraforumposts,wherethenumberofinstancesofcomparativerelationis12timesmorethanthatintheotherdatasets.Allsystemsperformbetterinpredictingpositiverelationsthanthenegativeones.Thiscorrespondswelltotheempiricalfindingsin(wilson,2008)thatpeopleintendtousemorecomplexexpressionsfornegativesentimentsthantheiraffirmativecounter-parts.ItisalsoinaccordancewiththedistributionoftheserelationsinourSRGcorpuswhichisrandomlysampledfromtheonlinedocuments.Forlearningsystems,itcanalsobeexplainedbythefactthatthetrainingdataforpositiverelationsareconsiderablymorethanthosefornegativeones.Thecomparativerelationisthehardestonetoprocesssincewefoundthatmanycorrespondingexpressionsdonotcontainexplicitkeywordsforcomparison.Tounderstandtheperformanceofthekeyfea-turegroupsinourmodelbetter,weremoveeachgroupfromthefullSENTI-LSSVMsystemandeval-uatethevariationswithmoviereviewsandcameraforumposts,whichhaverelativelybalanceddistri-butionofrelationtypes.AsshowninTable3,thefeaturesfromthesentimentpredictorsmakesignif-icantcontributionsforbothdatasets.Thediffer-entdropsoftheperformanceindicatethatthepo-
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
1
7
3
1
5
6
6
8
3
4
/
/
t
yo
a
C
_
a
_
0
0
1
7
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
9
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
165
PositiveNegativeComparisonMicro-averagePRFPRFPRFPRFCameraForumDING-RULE56.439.046.146.224.031.642.614.021.053.430.839.0SENTI-SSVM60.235.644.844.238.541.228.040.132.943.736.739.9SENTI-LSSVM69.238.949.850.839.344.342.635.138.556.538.045.4CameraRe-viewDING-RULE83.669.075.668.638.849.630.016.921.681.158.668.1SENTI-SSVM72.675.474.063.962.563.228.038.932.568.170.469.3SENTI-LSSVM77.385.481.268.961.364.922.320.721.673.173.473.7MovieForumDING-RULE63.737.447.127.634.330.68.95.66.848.235.941.2SENTI-SSVM66.230.141.325.617.320.744.256.749.753.327.936.6SENTI-LSSVM63.344.252.129.745.636.040.145.042.449.744.647.0MovieRe-viewDING-RULE66.547.255.242.039.140.531.412.017.456.244.049.4SENTI-SSVM61.354.057.445.213.721.124.563.335.354.639.245.7SENTI-LSSVM59.079.167.653.351.452.328.334.030.957.968.862.9Table2:EvaluationresultsforDING-RULE,SENTI-SSVMandSENTI-LSSVM.Boldfacefiguresarestatisticallysignificantlybetterthanallothersinthesamecomparisongroupundert-testwithp=0.05.FeatureModelsMovieReviewsCameraForumsfullsystem62.945.4¬unigram63.2(+0.3)41.2(-4.2)¬context54.5(-8.4)46.0(+0.6)¬co-occurrence62.6(-0.3)44.9(-0.5)¬senti-predictors61.3(-1.6)34.3(-11.1)Table3:Micro-averageF-measureofSENTI-LSSVMwithdifferentfeaturemodelslaritiespredictedbyrulesaremoreconsistentincameraforumpoststhaninmoviereviews.Duetothecomplexityofexpressionsinthemoviere-viewsourmodelcannotbenefitfromtheunigramfeaturesbutthesefeaturesareagoodcompensationforthesentimentpredictorfeaturesincamerafo-rumposts.Thesharpdropbyremovingthecontextfeaturesfromourmodelonmoviereviewsindicatesthatthesentimentsinmoviereviewsdependhighlyontherelationsoftheprevioussentences.Incon-trast,thesentiment-orientedrelationsoftheprevi-oussentencescouldbeareasonofoverfittingforcameraforumdata.Theedgeco-occurrencefea-turesdonotplayanimportantroleinourmodelsincethenumberofco-occurredsentiment-orientedrelationsinthesentenceswithcontrastconjunctionslike“but”issmall.However,wefoundthatallow-ingtheco-occurrenceofanysentiment-orientedre-lationswouldharmtheperformanceofthemodel.Inaddition,ourexperimentsshowedthatthesep-aratedapproach,whichtrainsamodelforsenti-mentpolaritiesandcomparativerelationsrespec-tively,leadstoadecreasebyalmost1%intermsoftheF-measureaveragedoverallfourdatasets.ThelargestdropofF-measureis3%oncameraforumposts,sincethisdatasetcontainsthelargestpropor-tionofcomparativerelations.Wefoundthattheer-rorsareincreasedwhenthetrainedmodelsmakeconflictingpredictions.Inthiscase,thejointap-proachcantakeallfactorsintoaccountandmakemoreconsistentdecisionsthantheseparatedap-proaches.10ConclusionWeproposedSENTI-LSSVMmodelforextractingin-stancesofbothsentimentpolaritiesandcomparativerelations.Forevaluatingandtrainingthemodel,wecreatedanSRGcorpusbyusingalightweightan-notationscheme.Weshowedthatourmodelcanautomaticallyfindtextualevidencestosupportitsrelationpredictionsandachievessignificantlybet-terF-measurescoresthanalternativestate-of-the-artmethods.ReferencesYejinChoiandClaireCardie.2009.Adaptingapolaritylexiconusingintegerlinearprogrammingfordomain-specificsentimentclassification.InProceedingsofthe2009ConferenceonEmpiricalMethodsinNatural
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
1
7
3
1
5
6
6
8
3
4
/
/
t
yo
a
C
_
a
_
0
0
1
7
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
9
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
166
LanguageProcessing:Volume2-Volume2,EMNLP’09,pages590–598,Stroudsburg,Pensilvania,USA.Associa-tionforComputationalLinguistics.YejinChoiandClaireCardie.2010.Hierarchicalse-quentiallearningforextractingopinionsandtheirat-tributes.InProceedingsoftheAnnualmeetingoftheAssociationforComputationalLinguistics,pages269–274.AssociationforComputationalLinguistics.YejinChoi,EricBreck,andClaireCardie.2006.Jointextractionofentitiesandrelationsforopinionrecog-nition.InProceedingsoftheConferenceonEmpiricalMethodsinNaturalLanguageProcessing,pages431–439,Stroudsburg,Pensilvania,USA.AssociationforCompu-tationalLinguistics.JacobCohen.1968.WeightedKappa:NominalScaleAgreementProvisionforScaledDisagreementorPar-tialCredit.Psychologicalbulletin,70(4):213.XiaowenDing,BingLiu,andPhilipS.Yu.2008.Aholisticlexicon-basedapproachtoopinionmining.InProceedingsofthe2008InternationalConferenceonWebSearchandDataMining,pages231–240,NewYork,Nueva York,USA.ACM.XiaowenDing,BingLiu,andLeiZhang.2009.Entitydiscoveryandassignmentforopinionminingapplica-tions.InProceedingsoftheACMSIGKDDConfer-enceonKnowledgeDiscoveryandDataMining,pages1125–1134.JohnDuchiandYoramSinger.2009.Efficientonlineandbatchlearningusingforwardbackwardsplitting.TheJournalofMachineLearningResearch,10:2899–2934.MurthyGanapathibhotlaandBingLiu.2008.Miningopinionsincomparativesentences.InProceedingsofthe22ndInternationalConferenceonComputationalLinguistics-Volume1,pages241–248,Stroudsburg,Pensilvania,USA.AssociationforComputationalLinguistics.NamrataGodbole,ManjunathSrinivasaiah,andStevenSkiena.2007.Large-scalesentimentanalysisfornewsandblogs(systemdemonstration).InProceed-ingsoftheInternationalAAAIConferenceonWeblogsandSocialMedia.JohnEHopcroftandRichardMKarp.1973.Annˆ5/2algorithmformaximummatchingsinbipartitegraphs.SIAMJournaloncomputing,2(4):225–231.MinqingHuandBingLiu.2004.Miningandsumma-rizingcustomerreviews.InProceedingsofthetenthACMSIGKDDinternationalconferenceonKnowl-edgediscoveryanddatamining,ProceedingsoftheACMSIGKDDConferenceonKnowledgeDiscov-eryandDataMining,pages168–177,NewYork,Nueva York,USA.ACM.WeiJin,HungHayHo,andRohiniK.Srihari.2009.Opinionminer:anovelmachinelearningsystemforwebopinionminingandextraction.InProceedingsofthe15thACMSIGKDDinternationalconferenceonKnowledgediscoveryanddatamining,pages1195–1204,NewYork,Nueva York,USA.ACM.NitinJindalandBingLiu.2006.Miningcomparativesentencesandrelations.InProceedingsofthe21stIn-ternationalConferenceonArtificialIntelligence-Vol-ume2,AAAI’06,pages1331–1336.AAAIPress.RichardJohanssonandAlessandroMoschitti.2011.Extractingopinionexpressionsandtheirpolarities–explorationofpipelinesandjointmodels.InProceed-ingsoftheAnnualmeetingoftheAssociationforCom-putationalLinguistics,volume11,pages101–106.JasonS.Kessler,MiriamEckert,LyndsieClark,andNicolasNicolov.2010.The2010icwsmjdpasent-mentcorpusfortheautomotivedomain.In4thInter-nationalAAAIConferenceonWeblogsandSocialMe-diaDataWorkshopChallenge(ICWSM-DWC2010).Soo-MinKimandEduardHovy.2006.Extractingopin-ions,opinionholders,andtopicsexpressedinonlinenewsmediatext.InProceedingsoftheWorkshoponSentimentandSubjectivityinText,SST’06,pages1–8,Stroudsburg,Pensilvania,USA.AssociationforComputationalLinguistics.DanKleinandChristopherD.Manning.2003.Accurateunlexicalizedparsing.InProceedingsofthe41stAn-nualMeetingonAssociationforComputationalLin-guistics-Volume1,ACL’03,pages423–430,Strouds-burg,Pensilvania,USA.AssociationforComputationalLin-guistics.Lun-WeiKu,Yu-TingLiang,andHsin-HsiChen.2006.Opinionextraction,summarizationandtrackinginnewsandblogcorpora.InAAAISpringSympo-sium:ComputationalApproachestoAnalyzingWe-blogs,pages100–107.BingLiu,MinqingHu,andJunshengCheng.2005.Opinionobserver:analyzingandcomparingopinionsontheweb.InProceedingsofthe14thinternationalconferenceonWorldWideWeb,pages342–351,NewYork,Nueva York,USA.ACM.AndréL.Martins,NoahA.Smith,andEricP.Xing.2009.Conciseintegerlinearprogrammingformula-tionsfordependencyparsing.InProceedingsoftheAnnualmeetingoftheAssociationforComputationalLinguistics,pages342–350.RyanT.McDonald,KerryHannan,TylerNeylon,MikeWells,andJeffreyC.Reynar.2007.Structuredmod-elsforfine-to-coarsesentimentanalysis.InProceed-ingsoftheAnnualmeetingoftheAssociationforCom-putationalLinguistics.BoPangandLillianLee.2007.Opinionminingandsentimentanalysis.FoundationsandTrendsinInfor-mationRetrieval,2(1-2):1–135.
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
1
7
3
1
5
6
6
8
3
4
/
/
t
yo
a
C
_
a
_
0
0
1
7
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
9
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
167
Ana-MariaPopescuandOrenEtzioni.2005.Extract-ingproductfeaturesandopinionsfromreviews.InProceedingsoftheconferenceonHumanLanguageTechnologyandEmpiricalMethodsinNaturalLan-guageProcessing,HLT’05,pages339–346,Strouds-burg,Pensilvania,USA.AssociationforComputationalLin-guistics.LizhenQu,GeorgianaIfrim,andGerhardWeikum.2010.Thebag-of-opinionsmethodforreviewrat-ingpredictionfromsparsetextpatterns.InChu-RenHuangandDanJurafsky,editores,Proceedingsofthe23rdInternationalConferenceonComputationalLin-guistics(Coling2010),ACLAnthology,pages913–921,Beijing,China.TsinghuaUniversityPress.LizhenQu,RainerGemulla,andGerhardWeikum.2012.Aweaklysupervisedmodelforsentence-levelseman-ticorientationanalysiswithmultipleexperts.InJointConferenceonEmpiricalMethodsinNaturalLan-guageProcessingandComputationalNaturalLan-guageLearning(EMNLP-CoNLL),pages149–159,JejuIsland,Korea,July.ProceedingsoftheAnnualmeetingoftheAssociationforComputationalLinguis-tics.RichardSocher,BrodyHuval,ChristopherD.Manning,andAndrewY.Ng.2012.Semanticcompositionalitythroughrecursivematrix-vectorspaces.InProceed-ingsoftheConferenceonEmpiricalMethodsinNatu-ralLanguageProcessing,pages1201–1211.SwapnaSomasundaranandJanyceWiebe.2009.Rec-ognizingstancesinonlinedebates.InProceedingsoftheJointconferenceofthe47thAnnualMeetingoftheAssociationforComputationalLinguisticsandthe4thInternationalJointConferenceonNaturalLanguageProcessingoftheAsianFederationofNaturalLan-guageProcessing,pages226–234.MaiteTaboada,JulianBrooke,MilanTofiloski,Kim-berlyD.Voll,andManfredStede.2011.Lexicon-basedmethodsforsentimentanalysis.ComputationalLinguistics,37(2):267–307.OscarTäckströmandRyanMcDonald.2011.Discov-eringfine-grainedsentimentwithlatentvariablestruc-turedpredictionmodels.InProceedingsofthe33rdEuropeanconferenceonAdvancesininformationre-trieval,ECIR’11,pages368–374,Berlin,Heidelberg.Springer-Verlag.CigdemToprak,NiklasJakob,andIrynaGurevych.2010.Sentenceandexpressionlevelannotationofopinionsinuser-generateddiscourse.InProceedingsofthe48thAnnualMeetingoftheAssociationforComputationalLinguistics,ACL’10,pages575–584,Stroudsburg,Pensilvania,USA.AssociationforComputationalLinguistics.IoannisTsochantaridis,ThomasHofmann,ThorstenJoachims,andYaseminAltun.2004.Supportvec-tormachinelearningforinterdependentandstructuredoutputspaces.InProceedingsoftheInternationalConferenceonMachineLearning,pages104–112.WeiWeiandJonAtleGulla.2010.Sentimentlearn-ingonproductreviewsviasentimentontologytree.InProceedingsoftheAnnualmeetingoftheAssociationforComputationalLinguistics,pages404–413.JanyceWiebe,TheresaWilson,andClaireCardie.2005.Annotatingexpressionsofopinionsandemotionsinlanguage.LanguageResourcesandEvaluation,39(2-3):165–210.TheresaWilson,JanyceWiebe,andPaulHoffmann.2005.Recognizingcontextualpolarityinphrase-levelsentimentanalysis.InProceedingsoftheconfer-enceonHumanLanguageTechnologyandEmpiricalMethodsinNaturalLanguageProcessing,HLT’05,pages347–354,Stroudsburg,Pensilvania,USA.AssociationforComputationalLinguistics.TheresaAnnWilson.2008.Fine-grainedsubjectivityandsentimentanalysis:recognizingtheintensity,po-larity,andattitudesofprivatestates.Ph.D.thesis,UNIVERSITYOFPITTSBURGH.YuanbinWu,QiZhang,XuanjingHuang,andLideWu.2011.Structuralopinionminingforgraph-basedsen-timentrepresentation.InProceedingsoftheConfer-enceonEmpiricalMethodsinNaturalLanguagePro-cessing,pages1332–1341.AinurYessenalinaandClaireCardie.2011.Composi-tionalmatrix-spacemodelsforsentimentanalysis.InProceedingsoftheConferenceonEmpiricalMethodsinNaturalLanguageProcessing,pages172–182.Chun-NamJohnYuandThorstenJoachims.2009.Learningstructuralsvmswithlatentvariables.InPro-ceedingsoftheInternationalConferenceonMachineLearning,page147.NingYuandSandraKübler.2011.Fillingthegap:Semi-supervisedlearningforopiniondetectionacrossdomains.InProceedingsoftheFifteenthConferenceonComputationalNaturalLanguageLearning,pages200–209.AssociationforComputationalLinguistics.
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
1
7
3
1
5
6
6
8
3
4
/
/
t
yo
a
C
_
a
_
0
0
1
7
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
9
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
168