Análisis semántico de marcos

Análisis semántico de marcos

Dipanjan Das
Google Inc.

∗∗

Desai Chen
Instituto de Tecnología de Massachusetts

andref. t. Martins
Priberam Labs
Instituto de Telecomunicac¸ ˜oes


Nathan Schneider
Carnegie Mellon University

Noah A. Smith§
Carnegie Mellon University

Frame semantics is a linguistic theory that has been instantiated for English in the FrameNet
lexicon. We solve the problem of frame-semantic parsing using a two-stage statistical model
that takes lexical targets (es decir., content words and phrases) in their sentential contexts and
predicts frame-semantic structures. Given a target in context, the first stage disambiguates it to a
semantic frame. This model uses latent variables and semi-supervised learning to improve frame
disambiguation for targets unseen at training time. The second stage finds the target’s locally
expressed semantic arguments. At inference time, a fast exact dual decomposition algorithm
collectively predicts all the arguments of a frame at once in order to respect declaratively stated
linguistic constraints, resulting in qualitatively better structures than na¨ıve local predictors.
Both components are feature-based and discriminatively trained on a small set of annotated
frame-semantic parses. On the SemEval 2007 benchmark data set, the approach, along with a
heuristic identifier of frame-evoking targets, outperforms the prior state of the art by significant
margins. Además, we present experiments on the much larger FrameNet 1.5 data set. Nosotros
have released our frame-semantic parser as open-source software.

∗ Google Inc., Nueva York, Nueva York 10011. Correo electrónico: dipanjand@google.com.
∗∗ Computer Science and Artificial Intelligence Laboratory, Instituto de Tecnología de Massachusetts,

Cambridge, MAMÁ 02139. Correo electrónico: desaic@csail.mit.edu.


† Alameda D. Afonso Henriques, 41 – 2.
‡ School of Computer Science, Carnegie Mellon University, pittsburgh, Pensilvania 15213.

Andar, 1000-123, Lisboa, Portugal. Correo electrónico: atm@priberam.pt.

Correo electrónico: nschneid@cs.cmu.edu.

§ School of Computer Science, Carnegie Mellon University, pittsburgh, Pensilvania 15213.

Correo electrónico: nasmith@cs.cmu.edu.

Envío recibido: 4 Puede 2012; revised submission received: 10 Noviembre 2012; accepted for publication:
22 December 2012.

doi:10.1162/COLI a 00163

© 2014 Asociación de Lingüística Computacional

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Ligüística computacional

Volumen 40, Número 1

1. Introducción

FrameNet (Fillmore, Johnson, and Petruck 2003) is a linguistic resource storing consider-
able information about lexical and predicate-argument semantics in English. Grounded
in the theory of frame semantics (Fillmore 1982), it suggests—but does not formally
define—a semantic representation that blends representations familiar from word-sense
disambiguation (Ide and V´eronis 1998) and semantic role labeling (srl; Gildea and
Jurafsky 2002). Given the limited size of available resources, accurately producing
richly structured frame-semantic structures with high coverage will require data-driven
techniques beyond simple supervised classification, such as latent variable modeling,
semi-supervised learning, and joint inference.

In this article, we present a computational and statistical model for frame-semantic
analizando, the problem of extracting from text semantic predicate-argument structures
such as those shown in Figure 1. We aim to predict a frame-semantic representation
with two statistical models rather than a collection of local classifiers, unlike earlier ap-
se acerca (Panadero, Ellsworth, and Erk 2007). We use a probabilistic framework that cleanly
integrates the FrameNet lexicon and limited available training data. The probabilistic
framework we adopt is highly amenable to future extension through new features, más
relaxed independence assumptions, and additional semi-supervised models.

Carefully constructed lexical resources and annotated data sets from FrameNet,
detailed in Section 3, form the basis of the frame structure prediction task. We de-
compose this task into three subproblems: target identification (Sección 4), en el cual
frame-evoking predicates are marked in the sentence; frame identification (Sección 5),
in which the evoked frame is selected for each predicate; and argument identification
(Sección 6), in which arguments to each frame are identified and labeled with a role from
that frame. Experiments demonstrating favorable performance to the previous state of
the art on SemEval 2007 and FrameNet data sets are described in each section. Alguno
novel aspects of our approach include a latent-variable model (Sección 5.2) and a semi-
supervised extension of the predicate lexicon (Sección 5.5) to facilitate disambiguation of
words not in the FrameNet lexicon; a unified model for finding and labeling arguments

Cifra 1
An example sentence from the annotations released as part of FrameNet 1.5 with three targets
marked in bold. Note that this annotation is partial because not all potential targets have been
annotated with predicate-argument structures. Each target has its evoked semantic frame
marked above it, enclosed in a distinct shape or border style. For each frame, its semantic roles
are shown enclosed within the same shape or border style, and the spans fulfilling the roles are
connected to the latter using dotted lines. Por ejemplo, manner evokes the CONDUCT frame, y
has the AGENT and MANNER roles fulfilled by Austria and most un-Viennese, respectivamente.

10

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Das et al.

Análisis semántico de marcos

(Sección 6) that diverges from prior work in semantic role labeling; and an exact dual
decomposition algorithm (Sección 7) that collectively predicts all the arguments of a
frame together, thereby incorporating linguistic constraints in a principled fashion.

Our open-source parser, named SEMAFOR (Semantic Analyzer of Frame Represen-
taciones)1 achieves the best published results to date on the SemEval 2007 frame-semantic
structure extraction task (Panadero, Ellsworth, and Erk 2007). Herein, we also present
results on newly released data with FrameNet 1.5, the latest edition of the lexicon.
Some of the material presented in this article has appeared in previously published
conference papers: Das et al. (2010) presented the basic model, Das and Smith (2011)
described semi-supervised lexicon expansion, Das and Smith (2012) demonstrated a
sparse variant of lexicon expansion, and Das, Martins, and Smith (2012) presented the
dual decomposition algorithm for constrained joint argument identification. We present
here a synthesis of those results and several additional details:

1. The set of features used in the two statistical models for frame identification and

argument identification.

2. Details of a greedy beam search algorithm for argument identification that avoids

illegal argument overlap.

3. Error analysis pertaining to the dual decomposition argument identification algo-

ritmo, in contrast with the beam search algorithm.

4. Results on full frame-semantic parsing using graph-based semi-supervised learn-
ing with sparsity-inducing penalties; this expands the small FrameNet predicate
lexicon, enabling us to handle unknown predicates.

Our primary contributions are the use of efficient structured prediction tech-
niques suited to shallow semantic parsing problems, novel methods in semi-supervised
learning that improve the lexical coverage of our parser, and making frame-semantic
structures a viable computational semantic representation usable in other language
tecnologías. To set the stage, we next consider related work in the automatic prediction
of predicate-argument semantic structures.

2. Trabajo relacionado

En esta sección, we will focus on previous scientific work relevant to the problem of
análisis semántico de marcos. Primero, we will briefly discuss work done on PropBank-style
etiquetado de roles semánticos, following which we will concentrate on the more relevant prob-
lem of frame-semantic structure extraction. Próximo, we review previous work that has
used semi-supervised learning for shallow semantic parsing. Finalmente, we discuss prior
work on joint structure prediction relevant to frame-semantic parsing.

2.1 Semantic Role Labeling

Since Gildea and Jurafsky (2002) pioneered statistical semantic role labeling, allá
has been a great deal of computational work using predicate-argument structures
for semantics. The development of PropBank (Kingsbury and Palmer 2002), seguido
by CoNLL shared tasks on semantic role labeling (Carreras and M`arquez 2004,
2005) boosted research in this area. Cifra 2(a) shows an annotation from PropBank.
PropBank annotations are closely tied to syntax, because the data set consists of the

1 See http://www.ark.cs.cmu.edu/SEMAFOR.

11

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Ligüística computacional

Volumen 40, Número 1

(a)

(b)

Cifra 2
(a) A phrase-structure tree taken from the Penn Treebank and annotated with PropBank
predicate-argument structures. The verbs created and pushed serve as predicates in this
oración. Dotted arrows connect each predicate to its semantic arguments (bracketed phrases).
(b) A partial depiction of frame-semantic structures for the same sentence. The words in bold
are targets, which instantiate a (lemmatized and part-of-speech–tagged) lexical unit and evoke
a semantic frame. Every frame annotation is shown enclosed in a distint shape or border style,
and its argument labels are shown together on the same vertical tier below the sentence.
See text for explanation of abbreviations.

phrase-structure syntax trees from the Wall Street Journal section of the Penn Treebank
(marco, Marcinkiewicz, and Santorini 1993) annotated with predicate-argument
structures for verbs. En figura 2(a), the syntax tree for the sentence is marked with
various semantic roles. The two main verbs in the sentence, created and pushed, son
the predicates. For the former, the constituent more than 1.2 million jobs serves as the
semantic role ARG1 and the constituent In that time serves as the role ARGM-TMP. Similarmente
for the latter verb, roles ARG1, ARG2, ARGM-DIR, and ARGM-TMP are shown in the figure.
PropBank defines core roles ARG0 through ARG5, which receive different interpretations
for different predicates. Additional modifier roles ARGM-* include ARGM-TMP (temporal)
and ARGM-DIR (directional), as shown in Figure 2(a). The PropBank representation
therefore has a small number of roles, and the training data set comprises some
40,000 oraciones, thus making the semantic role labeling task an attractive one from the
perspective of machine learning.

There are many instances of influential work on semantic role labeling using
PropBank conventions. Pradhan et al. (2004) present a system that uses support vector
máquinas (SVMs) to identify the arguments in a syntax tree that can serve as semantic
roles, followed by classification of the identified arguments to role names via a collection
of binary SVMs. Punyakanok et al. (2004) describe a semantic role labeler that uses inte-
ger linear programming for inference and uses several global constraints to find the best

12

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Das et al.

Análisis semántico de marcos

suited predicate-argument structures. Joint modeling for semantic role labeling with
discriminative log-linear models is presented by Toutanova, Haghighi, and Manning
(2005), where global features looking at all arguments of a particular verb together are
incorporated into a dynamic programming and reranking framework. The Computa-
tional Linguistics special issue on semantic role labeling (M`arquez et al. 2008) includes
other interesting papers on the topic, leveraging the PropBank conventions for labeling
shallow semantic structures. Recientemente, there have been initiatives to predict syntactic
dependencies as well as PropBank-style predicate-argument structures together using
one joint model (Surdeanu et al.. 2008; Hajiˇc et al. 2009).

Aquí, we focus on the related problem of frame-semantic parsing. Note from the
annotated semantic roles for the two verbs in the sentence of Figure 2(a) that it is
unclear what the core roles ARG1 or ARG2 represent linguistically. To better understand
the roles’ meaning for a given verb, one has to refer to a verb-specific file provided along
with the PropBank corpus. Although collapsing these verb-specific core roles into tags
ARG0-ARG5 leads to a small set of classes to be learned from a reasonable sized corpus,
analysis shows that the roles ARG2–ARG5 serve many different purposes for different
verbos. Hacer, Loper, and Palmer (2007) point out that these four roles are highly overloaded
and inconsistent, and they mapped them to VerbNet (Schuler 2005) thematic roles to
get improvements on the SRL task. Recientemente, Bauer and Rambow (2011) presentado
a method to improve the syntactic subcategorization patterns for FrameNet lexical
units using VerbNet. Instead of working with PropBank, we focus on shallow semantic
parsing of sentences in the paradigm of frame semantics (Fillmore 1982), to which we
turn next.

2.2 Análisis semántico de marcos

The FrameNet lexicon (Fillmore, Johnson, and Petruck 2003) contains rich linguistic
information about lexical items and predicate-argument structures. A semantic frame
present in this lexicon includes a list of lexical units, which are associated words
and phrases that can potentially evoke it in a natural language utterance. Each frame
in the lexicon also enumerates several roles corresponding to facets of the scenario
represented by the frame. In a frame-analyzed sentence, predicates evoking frames
are known as targets, and a word or phrase filling a role is known as an argument.
Cifra 2(b) shows frame-semantic annotations for the same sentence as in Figure 2(a).
(In the figure, Por ejemplo, the CARDINAL NUMBERS frame, “M” denotes the role Multiplier
and “E” denotes the role Entity.) Note that the verbs created and pushed evoke the frames
INTENTIONALLY CREATE and CAUSE CHANGE POSITION ON A SCALE, respectivamente. The correspond-
ing lexical units2 from the FrameNet lexicon, create.V and push.V, are also shown.
The PropBank analysis in Figure 2(a) also has annotations for these two verbs. Mientras
PropBank labels the roles of these verbs with its limited set of tags, the frame-
semantic parse labels each frame’s arguments with frame-specific roles shown in the
figura, making it immediately clear what those arguments mean. Por ejemplo, para el
INTENTIONALLY CREATE frame, más que 1.2 million jobs is the Created entity, and In that time is
the Time when the jobs were created. FrameNet also allows non-verbal words and phrases
to evoke semantic frames: in this sentence, million evokes the frame CARDINAL NUMBERS
and doubles as its Number argument, con 1.2 as Multiplier, jobs as the Entity being quantified,
and more than as the Precision of the quantity expression.

2 See Section 5.1 for a detailed description of lexical units.

13

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Ligüística computacional

Volumen 40, Número 1

EVENT

Event

Place

Time
event.n, happen.v,
occur.v, take place.v, …

OBJECTIVE_INFLUENCE

Place

Time

uencing_entity

uencing_situation

Dependent_entity
affect.v, effect.n,
impact.n, impact.v, …

TRANSITIVE_ACTION

CAUSE_TO_MAKE_NOISE

MAKE_NOISE

Event

Place

Time

Agent

Cause

Patient

Purpose

Place

Time

Agent

Cause

Sound_maker
blare.v, honk.v, play.v,
ring.v, toot.v, …

Sound

Place

Time

Noisy_event

Sound_source
cough.v, gobble.v,
hiss.v, ring.v, yodel.v, …

Inheritance relation

Causative_of relation

Excludes relation

Cifra 3
Partial illustration of frames, roles, and lexical units related to the CAUSE TO MAKE NOISE frame,
from the FrameNet lexicon. Core roles are filled bars. Non-core roles (such as Place and Time) son
unfilled bars. No particular significance is ascribed to the ordering of a frame’s roles in its
lexicon entry (the selection and ordering of roles above is for illustrative convenience).
CAUSE TO MAKE NOISE defines a total of 14 roles, many of them not shown here.

Whereas PropBank contains verbal predicates and NomBank (Meyers et al. 2004) estafa-
tains nominal predicates, FrameNet counts these as well as allowing adjectives, adverbs,
and prepositions among its lexical units. Finalmente, FrameNet frames organize predicates
according to semantic principles, both by allowing related terms to evoke a common
marco (p.ej., push.V, raise.V, and growth.N for CAUSE CHANGE POSITION ON A SCALE) and by
defining frames and their roles within a hierarchy (ver figura 3). PropBank does not
explicitly encode relationships among predicates.

Most early work on frame-semantic parsing has made use of the exemplar sentences
in the FrameNet corpus (mira la sección 3.1), each of which is annotated for a single frame
and its arguments. Gildea and Jurafsky (2002) presented a discriminative model for
arguments given the frame; Thompson, Exacción, and Manning (2003) used a generative
model for both the frame and its arguments. Fleischman, Kwon, and Hovy (2003) primero
used maximum entropy models to find and label arguments given the frame. Shi and
Mihalcea (2004) developed a rule-based system to predict frames and their arguments
en el texto, and Erk and Pad ´o (2006) introduced the Shalmaneser tool, which uses naive
Bayes classifiers to do the same. Other FrameNet SRL systems (Giuglea and Moschitti
2006, por ejemplo) have used SVMs. Most of this work was done on an older, smaller
version of FrameNet, containing around 300 frames and fewer than 500 unique semantic
roles. Unlike this body of work, we experimented with the larger SemEval 2007 shared
task data set, and also the newer FrameNet 1.5,3 which lists 877 frames and 1,068 role
types—thus handling many more labels, and resulting in richer frame-semantic parses.
Recent work in frame-semantic parsing—in which sentences may contain multiple
frames which need to be recognized along with their arguments—was undertaken
as the SemEval 2007 tarea 19 of frame-semantic structure extraction (Panadero, Ellsworth,
and Erk 2007). This task leveraged FrameNet 1.3, and also released a small corpus

3 Available at http://framenet.icsi.berkeley.edu as of 19 Enero 2013.

14

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Das et al.

Análisis semántico de marcos

containing a little more than 2,000 sentences with full text annotations. The LTH system
of Johansson and Nugues (2007), which we use as our baseline (Sección 3.4), had the
best performance in the SemEval 2007 task in terms of full frame-semantic parsing.
Johansson and Nugues broke down the task as identifying targets that could evoke
frames in a sentence, identifying the correct semantic frame for a target, and finally
determining the arguments that fill the semantic roles of a frame. They used a series
of SVMs to classify the frames for a given target, associating unseen lexical items to
frames and identifying and classifying token spans as various semantic roles. Ambos
the full text annotation corpus as well as the FrameNet exemplar sentences were
used to train their models. Unlike Johansson and Nugues, we use only the full text
annotated sentences as training data, model the whole problem with only two statis-
tical models, and obtain significantly better overall parsing scores. We also model the
argument identification problem using a joint structure prediction model and use semi-
supervised learning to improve predicate coverage. We also present experiments on
recently released FrameNet 1.5 datos.

In other work based on FrameNet, Matsubayashi, Okazaki, and Tsujii (2009) en-
vestigated various uses of FrameNet’s taxonomic relations for learning generalizations
over roles; they trained a log-linear model on the SemEval 2007 data to evaluate features
for the subtask of argument identification. Another line of work has sought to extend
the coverage of FrameNet by exploiting VerbNet and WordNet (Shi and Mihalcea
2005; Giuglea and Moschitti 2006; Pennacchiotti et al. 2008) and by projecting entries
and annotations within and across languages (Boas 2002; Fung and Chen 2004; Pado
and Lapata 2005; F ¨urstenau and Lapata 2009b). Others have explored the application
of frame-semantic structures to tasks such as information extraction (Moschitti,
Morarescu, and Harabagiu 2003; Surdeanu et al.. 2003), textual entailment (Burchardt
and Frank 2006; Burchardt et al. 2009), question answering (Narayanan and Harabagiu
2004; Shen and Lapata 2007), and paraphrase recognition (Pad ´o and Erk 2005).

2.3 Semi-Supervised Methods

Although there has been a significant amount of work in supervised shallow semantic
parsing using both PropBank- and FrameNet-style representations, a few improve-
ments over vanilla supervised methods using unlabeled data are notable. F ¨urstenau and
Lapata (2009b) present a method of projecting predicate-argument structures from some
seed examples to unlabeled sentences, and use a linear program formulation to find
the best alignment explaining the projection. Próximo, the projected information as well
as the seeds are used to train statistical model(s) for SRL. The authors ran experiments
using a set of randomly chosen verbs from the exemplar sentences of FrameNet and
found improvements over supervised methods. In an extension to this work, F ¨urstenau
and Lapata (2009a) present a method for finding examples for unseen verbs using a
graph alignment method; this method represents sentences and their syntactic analysis
as graphs and graph alignment is used to project annotations from seed examples to
unlabeled sentences. This alignment problem is again modeled as a linear program.
F ¨urstenau and Lapata (2012) present an detailed expansion of the aforementioned
documentos. Although this line of work presents a novel direction in the area of SRL, el
published approach does not yet deal with non-verbal predicates and does not evaluate
the presented methods on the full text annotations of the FrameNet releases.

Deschacht and Moens (2009) present a technique of incorporating additional infor-
mation from unlabeled data by using a latent words language model. Latent variables
are used to model the underlying representation of words, and parameters of this model

15

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Ligüística computacional

Volumen 40, Número 1

are estimated using standard unsupervised methods. Próximo, the latent information is
used as features for an SRL model. Improvements over supervised SRL techniques
are observed with the augmentation of these extra features. The authors also compare
their method with the aforementioned two methods of F ¨urstenau and Lapata (2009a,
2009b) and show relative improvements. Experiments are performed on the CoNLL
2008 shared task data set (Surdeanu et al.. 2008), which follows the PropBank conven-
tions and only labels verbal and nominal predicates—in contrast to our work, cual
includes most lexicosyntactic categories. A similar approach is presented by Weston,
Ratle, and Collobert (2008), who use neural embeddings of words, which are eventu-
ally used for SRL; improvements over state-of-the-art PropBank-style SRL systems are
observado.

Recientemente, there has been related work in unsupervised semantic role labeling (Lang
and Lapata 2010, 2011; Titov and Klementiev 2012) that attempts to induce semantic
roles automatically from unannotated data. This line of work may be useful in discov-
ering new semantic frames and roles, but here we stick to the concrete representation
provided in FrameNet, without seeking to expand its inventory of semantic types. Nosotros
present a new semi-supervised technique to expand the set of lexical items with the
potential semantic frames that they could evoke; we use a graph-based semi-supervised
learning framework to achieve this goal (Sección 5.5).

2.4 Joint Inference and Shallow Semantic Parsing

Most high-performance SRL systems that use conventions from PropBank (Kingsbury
and Palmer 2002) and NomBank (Meyers et al. 2004) utilize joint inference for seman-
tic role labeling (M`arquez et al. 2008). To our knowledge, the separate line of work
investigating frame-semantic parsing has not previously dealt with joint inference. A
common trait in prior work, both in PropBank and FrameNet conventions, ha sido
the use of a two-stage model that identifies arguments first, then labels them, a menudo
using dynamic programming or integer linear programs (ILPs); we treat both problems
together here.4

Recent work in natural language processing (NLP) problems has focused on ILP for-
mulations for complex structure prediction tasks like dependency parsing (Riedel and
Clarke 2006; Martins, Herrero, y xing 2009; Martins et al. 2010), sequence tagging (Roth
and Yih 2004), as well as PropBank SRL (Punyakanok et al. 2004). Whereas early work
in this area focused on declarative formulations tackled with off-the-shelf solvers, Rush
et al. (2010) proposed subgradient-based dual decomposition (also called Lagrangian
relaxation) as a way of exploiting the structure of the problem and existing combina-
torial algorithms. The method allows the combination of models that are individually
tractable, but not jointly tractable, by solving a relaxation of the original problem. Desde
entonces, dual decomposition has been used to build more accurate models for dependency
analizando (Koo et al. 2010), combinatory categorical grammar supertagging and parsing
(Auli and Lopez 2011), and machine translation (Chang and Collins 2011; DeNero and
Macherey 2011; Rush and Collins 2011).

Recientemente, Martins et al. (2011b) showed that the success of subgradient-based dual
decomposition strongly relies on breaking down the original problem into a “good”

4 In prior work, there are exceptions where identification and classification of arguments have been treated
in one step; for more details, please refer to the systems participating in the CoNLL-2004 shared task on
etiquetado de roles semánticos (Carreras and M`arquez 2004).

16

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Das et al.

Análisis semántico de marcos

decomposition, eso es, one with few overlapping components. This leaves out many
declarative constrained problems, for which such a good decomposition is not readily
disponible. For those, Martins et al. proposed the Alternating Directions Dual Decom-
posición (AD3) algoritmo, which retains the modularity of previous methods, but can
handle thousands of small overlapping components. We adopt that algorithm as it
perfectly suits the problem of argument identification, as we observe in Section 7.5 Nosotros
also contribute an exact branch-and-bound technique wrapped around AD3.

Before delving into the details of our modeling framework, we describe in detail the

structure of the FrameNet lexicon and the data sets used to train our models.

3. Resources and Task

We consider frame-semantic parsing resources consisting of a lexicon and annotated
sentences with frame-semantic structures, evaluation strategies, and previous baselines.

3.1 FrameNet Lexicon

The FrameNet lexicon is a taxonomy of manually identified general-purpose semantic
frames for English.6 Listed in the lexicon with each frame are a set of lemmas (con
parts of speech) that can denote the frame or some aspect of it—these are called lexical
units (LUs). In a sentence, word or phrase tokens that evoke a frame are known as
objetivos. The set of LUs listed for a frame in FrameNet may not be exhaustive; we may
see a target in new data that does not correspond to an LU for the frame it evokes.
Each frame definition also includes a set of frame elements, or roles, correspondiente
to different aspects of the concept represented by the frame, such as participants,
props, and attributes. We use the term argument to refer to a sequence of word tokens
annotated as filling a frame role. Cifra 1 shows an example sentence from the training
data with annotated targets, LUs, marcos, and role-argument pairs. The FrameNet
lexicon also provides information about relations between frames and between roles
(p.ej., INHERITANCE). Cifra 3 shows a subset of the relations between five frames and
their roles.

Accompanying most frame definitions in the FrameNet lexicon is a set of lexico-
graphic exemplar sentences (primarily from the British National Corpus) anotado
for that frame. Typically chosen to illustrate variation in argument realization pat-
terns for the frame in question, these sentences only contain annotations for a single
marco.

En experimentos preliminares, we found that using exemplar sentences directly to
train our models hurt performance as evaluated on SemEval 2007 datos, which formed
a benchmark for comparison with previous state of the art. This was a noteworthy
observación, given that the number of exemplar sentences is an order of magnitude
larger than the number of sentences in training data that we consider in our experiments
(Sección 3.2). This is presumably because the exemplars are not representative as a
sample, do not have complete annotations, and are not from a domain similar to the

5 AD3 was previously referred to as “DD-ADMM,” in reference to the use of dual decomposition with the

alternating directions method of multipliers.

6 Like the SemEval 2007 Participantes, we used FrameNet 1.3 and also the newer version of the lexicon,

FrameNet 1.5 (http://framenet.icsi.berkeley.edu).

17

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Ligüística computacional

Volumen 40, Número 1

Mesa 1
Salient statistics of the data sets used in our experiments. There is a significant overlap between
the two data sets.

SemEval 2007 Datos
count

FrameNet 1.5 Release
count

Exemplar sentences
Frame labels (types)
Role labels (types)
Sentences in training data
Targets in training data
Sentences in test data
Targets in test data
Unseen targets in test data

139,439
665
720
2,198
11,195
120
1,059
210

154,607
877
1,068
3,256
19,582
2,420
4,458
144

test data. En cambio, we make use of these exemplars in the construction of features
(Sección 5.2).

3.2 Datos

In our experiments on frame-semantic parsing, we use two sets of data:

1. SemEval 2007 datos: In benchmark experiments for comparison with previous
state of the art, we use a data set that was released as part of the SemEval 2007
shared task on frame-semantic structure extraction (Panadero, Ellsworth, and Erk 2007).
Full text annotations in this data set consisted of a few thousand sentences con-
taining multiple targets, each annotated with a frame and its arguments. The then-
current version of the lexicon (FrameNet 1.3) was used for the shared task as the
inventory of frames, roles, and lexical units (Cifra 3 illustrates a small portion
of the lexicon). In addition to the frame hierarchy, FrameNet 1.3 also contained
139,439 exemplar sentences containing one target each. Statistics of the data used
for the SemEval 2007 shared task are given in the first column of Table 1. A total
de 665 frame types and 720 role types appear in the exemplars and the training
portion of the data. We adopted the same training and test split as the SemEval
2007 shared task; sin embargo, we removed four documents from the training set7 for
desarrollo. Mesa 2 shows some additional information about the SemEval data
colocar; the variety of lexicosyntactic categories of targets stands in marked contrast
with the PropBank-style SRL data and task.

2. FrameNet 1.5 release: A more recent version of the FrameNet lexicon was released
en 2010.8 We also test our statistical models (only frame identification and argu-
ment identification) on this data set to get an estimate of how much improvement
additional data can provide. Details of this data set are shown in the second col-
umn of Table 1. Del 78 documents in this release with full text annotations, nosotros
selected 55 (19,582 objetivos) for training and held out the remaining 23 (4,458 tar-
gets) para las pruebas. There are fewer target annotations per sentence in the test set than

7 These were: StephanopoulousCrimes, Iran Biological, NorthKorea Introduction, and WMDNews 042106.
8 Released on 15 Septiembre 2010, and downloadable from http://framenet.icsi.berkeley.edu as of

13 Febrero 2013. En nuestros experimentos, we used a version downloaded on 22 Septiembre 2010.

18

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Das et al.

Análisis semántico de marcos

Mesa 2
Breakdown of targets and arguments in the SemEval 2007 training set in terms of part of speech.
The target POS is based on the LU annotation for the frame instance. For arguments, this reflects
the part of speech of the head word (estimated from an automatic dependency parse); el
percentage is out of all overt arguments.

objetivos
count %

Noun
Verb
Adjective
Preposition
Adverb
Número
Conjunction
Article

5,155
2,785
1,411
296
103
63
8
3

9,824

52 Noun
28
14

Preposition or
complementizer

3 Adjective
1 Verb
1

Pronoun
Adverb
Otro

argumentos
count %

55

15
10
7
4
2
6

9,439

2,553
1,744
1,156
736
373
1,047

17,048

the training set.9 Das and Smith (2011, supplementary material) give the names
of the test documents for fair replication of our work. We also randomly selected
4,462 targets from the training data for development of the argument identification
modelo (Sección 6.1).

Preprocesamiento. We preprocessed sentences in our data set with a standard set of anno-
taciones: POS tags from MXPOST (Ratnaparkhi 1996) and dependency parses from the
MST parser (McDonald, Crammer, and Pereira 2005); manual syntactic parses are not
available for most of the FrameNet-annotated documents. We used WordNet (Fellbaum
1998) for lemmatization. Our models treat these pieces of information as observations.
We also labeled each verb in the data as having ACTIVE or PASSIVE voice, using code
from the SRL system described by Johansson and Nugues (2008).

3.3 Task and Evaluation Methodology

Automatic annotations of frame-semantic structure can be broken into three parts:
(1) objetivos, the words or phrases that evoke frames; (2) the frame type, defined in the
lexicon, evoked by each target; y (3) the arguments, or spans of words that serve
to fill roles defined by each evoked frame. These correspond to the three subtasks
in our parser, each described and evaluated in turn: target identification (Sección 4),
frame identification (Sección 5, not unlike word-sense disambiguation), and argument
identification (Sección 6, essentially the same as semantic role labeling).

The standard evaluation script from the SemEval 2007 shared task calculates pre-
decisión, recordar, and F1-measure for frames and arguments; it also provides a score that
gives partial credit for hypothesizing a frame related to the correct one. We present

9 For creating the splits, we first included the documents that had incomplete annotations as mentioned in
the initial FrameNet 1.5 data release in the test set; because we do not evaluate target identification for
this version of data, the small number of targets per sentence does not matter. After these documents
were put into the test set, we randomly selected 55 remaining documents for training, and picked the
rest for additional testing. The final test set contains a total of 23 documentos. When these documents
are annotated in their entirety, the test set will become larger and the training set will be unaltered.

19

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Ligüística computacional

Volumen 40, Número 1

precisión, recordar, and F1-measure microaveraged across the test documents, report labels-
only matching scores (spans must match exactly), and do not use named entity labels.10
More details can be found in the task description paper from SemEval 2007 (Panadero,
Ellsworth, and Erk 2007). For our experiments, statistical significance is measured using
a reimplementation of Dan Bikel’s randomized parsing evaluation comparator, a strat-
ified shuffling test whose original implementation11 is accompanied by the following
descripción (quoted verbatim, with explanations of our use of the test given in square
brackets):

The null hypothesis is that the two models that produced the observed results are the
mismo, such that for each test instance [aquí, a set of predicate-argument structures for a
oración], the two observed scores are equally likely. This null hypothesis is tested by
randomly shuffling individual sentences’ scores between the two models and then
re-computing the evaluation metrics [precisión, recall or F1 score in our case]. If the
difference in a particular metric after a shuffling is equal to or greater than the original
observed difference in that metric, then a counter for that metric is incremented. Idealmente,
one would perform all 2n shuffles, where n is the number of test cases (oraciones), pero
given that this is often prohibitively expensive, the default number of iterations is
10,000 [we use independently sampled 10,000 shuffles]. After all iterations, el
likelihood of incorrectly rejecting the null [hypothesis, es decir., the p-value] is simply
(nc + 1)/(nt + 1), where nc is the number of random differences greater than the
original observed difference, and nt is the total number of iterations.

3.4 Base

A strong baseline for frame-semantic parsing is the system presented by Johansson and
Nugues (2007, hereafter J&N’07), the best system in the SemEval 2007 shared task. Eso
system is based on a collection of SVMs. They used a set of rules for target identification
which we describe in Appendix A. For frame identification, they used an SVM classifier
to disambiguate frames for known frame-evoking words. They used WordNet synsets
to extend the vocabulary of frame-evoking words to cover unknown words, y luego
used a collection of separate SVM classifiers—one for each frame—to predict a single
evoked frame for each occurrence of a word in the extended set.

j&N’07 followed Xue and Palmer (2004) in dividing the argument identification
problem into two subtasks: Primero, they classified candidate spans as to whether they
were arguments or not; then they assigned roles to those that were identified as ar-
guments. Both phases used SVMs. De este modo, their formulation of the problem involves
a multitude of independently trained classifiers that share no information—whereas
ours uses two log-linear models, each with a single set of parameters shared across all
contextos, to find a full frame-semantic parse.

We compare our models with J&N’07 using the benchmark data set from SemEval
2007. Sin embargo, because we are not aware of any other work using the FrameNet 1.5 full
text annotations, we report our results on that data set without comparison to any other
sistema.

10 For microaveraging, we concatenated all sentences of the test documents and measured precision and

recall over the concatenation. Macroaveraging, por otro lado, would mean calculating these metrics
for each document, then averaging them. Microaveraging treats every frame or argument as a unit,
regardless of the length of the document in which it occurs.

11 See http://www.cis.upenn.edu/(cid:2)dbikel/software.html#comparator.

20

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Das et al.

Análisis semántico de marcos

4. Target Identification

Target identification is the problem of deciding which word tokens (or word token
sequences) evoke frames in a given sentence. In other semantic role labeling schemes
(p.ej., PropBank), simple part-of-speech criteria typically distinguish targets from non-
objetivos. But in frame semantics, verbos, nouns, adjectives, and even prepositions can
evoke frames under certain conditions. One complication is that semantically impov-
erished support predicates (such as make in make a request) do not evoke frames in the
context of a frame-evoking, syntactically dependent noun (request). Además, solo
temporal, locative, and directional senses of prepositions evoke frames.12

Preliminary experiments using a statistical method for target identification gave
unsatisfactory results; en cambio, we followed J&N’07 in using a small set of rules to
identify targets. Primero, we created a master list of all the morphological variants of
targets that appear in the exemplar sentences and a given training set. For a sentence in
new data, we considered as candidate targets only those substrings that appear in this
master list. We also did not attempt to capture discontinuous frame targets: Por ejemplo,
we treat there would have been as a single span even though the corresponding LU is
there be.V.13

Próximo, we pruned the candidate target set by applying a series of rules identical
to the ones described by Johansson and Nugues (2007, see Appendix A), with two
exceptions. Primero, they identified locative, temporal, and directional prepositions using
a dependency parser so as to retain them as valid LUs. A diferencia de, we pruned all types
of prepositions because we found them to hurt our performance on the development
set due to errors in syntactic parsing. In a second departure from their target extraction
normas, we did not remove the candidate targets that had been tagged as support verbs
for some other target. Note that we used a conservative white list that filters out targets
whose morphological variants were not seen either in the lexicon or the training data.14
Por lo tanto, when this conservative process of automatic target identification is used, nuestro
system loses the capability to predict frames for completely unseen LUs, despite the fact
that our powerful frame identification model (Sección 5) can accurately label frames for
new LUs.15

Resultados. Mesa 3 shows results on target identification tested on the SemEval 2007 prueba
colocar; our system gains 3 F1 points over the baseline. This is statistically significant with
pag < 0.01. Our results are also significant in terms of precision (p < 0.05) and recall (p < 0.01). There are 85 distinct LUs for which the baseline fails to identify the correct target while our system succeeds. A considerable proportion of these units have more than 12 Note that there have been dedicated shared tasks to determine relationships between nominals (Girju et al. 2007) and word-sense disambiguation of prepositions (Litkowski and Hargraves 2007), but we do not build specific models for predicates of these categories. 13 There are 629 multiword LUs in the lexicon, and they correspond to 4.8% of the targets in the training set; among them are screw up.V, shoot the breeze.V, and weapon of mass destruction.N. In the SemEval 2007 training data, there are just 99 discontinuous multiword targets (1% of all targets). 14 This conservative approach violates theoretical linguistic assumptions about frame-evoking targets as governed by frame semantics. It also goes against the spirit of using linguistic constraints to improve the separate subtask of argument identification (see Section 7); however, due to varying distributions of target annotations, high empirical error in identifying locative, temporal, and directional prepositions, and support verbs, we resorted to this aggressive filtering heuristic to avoid making too many target identification mistakes. 15 To predict frames and roles for new and unseen LUs, SEMAFOR provides the user with an option to mark those LUs in the input. 21 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Computational Linguistics Volume 40, Number 1 Table 3 Target identification results for our system and the baseline on the SemEval’07 data set. Scores in bold denote significant improvements over the baseline (p < 0.05). TARGET IDENTIFICATION P R F1 Our technique (§4) Baseline:J&N’07 89.92 79.21 70.79 87.87 67.11 76.10 one token (e.g., chemical and biological weapon.N, ballistic missile.N), which J&N’07 do not model. The baseline also does not label variants of there be.V (e.g., there are and there has been), which we correctly label as targets. Some examples of other single token LUs that the baseline fails to identify are names of months, LUs that belong to the ORIGIN frame (e.g., iranian.A), and directions (e.g., north.A or north-south.A).16 5. Frame Identification Given targets, our parser next identifies their frames, using a statistical model. 5.1 Lexical Units FrameNet specifies a great deal of structural information both within and among frames. For frame identification we make use of frame-evoking lexical units, the (lem- matized and POS-tagged) words and phrases listed in the lexicon as referring to specific frames. For example, listed with the BRAGGING frame are 10 LUs, including boast.N, boast.V, boastful.A, brag.V, and braggart.N. Of course, due to polysemy and homonymy, the same LU may be associated with multiple frames; for example, gobble.V is listed under both the INGESTION and MAKE NOISE frames. We thus term gobble.V an ambiguous LU. All targets in the exemplar sentences, our training data, and most in our test data, correspond to known LUs. (See Section 5.4 for statistics of unknown LUs in the test sets.) To incorporate frame-evoking expressions found in the training data but not the lexicon—and to avoid the possibility of lemmatization errors—our frame identification model will incorporate, via a latent variable, features based directly on exemplar and training targets rather than LUs. Let L be the set of (unlemmatized and automati- cally POS-tagged) targets found in the exemplar sentences of the lexicon and/or the ⊆ L be the subset of these targets annotated as sentences in our training set. Let L evoking a particular frame f .17 Let Ll and Ll f denote the lemmatized versions of L and f , respectively. Then, we write boasted.VBD ∈ L L BRAGGINGto indicate that this inflected verb boasted and its lemma boast have been seen to evoke the BRAGGING frame. Significantly, however, another target, such as toot your own horn, might be used elsewhere to evoke this frame. We thus face the additional hurdle of predicting frames for unknown words. BRAGGING and boast.VBD ∈ Ll f 16 We do not evaluate the target identification module on the FrameNet 1.5 data set; we instead ran controlled experiments on those data to measure performance of the statistical frame identification and argument identification subtasks, assuming that the correct targets were given. Moreover, as discussed in Section 3.2, the target annotations on the FrameNet 1.5 test set were fewer in number in comparison to the training set, resulting in a mismatch of target distributions between train and test settings. 17 For example, on average, there are 34 targets per frame in the SemEval 2007 data set; the average frame ambiguity of each target in L is 1.17. 22 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Das et al. Frame-Semantic Parsing In producing full text annotations for the SemEval 2007 data set, annotators created several domain-critical frames that were not already present in version 1.3 of the lexicon. For our experiments we omit frames attested in neither the training data nor the exem- plar sentences from the lexicon.18 This leaves a total of 665 frames for the SemEval 2007 data set and a total of 877 frames for the FrameNet 1.5 data set. 5.2 Model For a given sentence x with frame-evoking targets t, let ti denote the ith target (a word (cid:6) of frames, one per i denote its lemma. We seek a list f = (cid:5)f1, . . . , fm sequence).19 Let tl target. In our model, the set of candidate frames for ti is defined to include every frame (cid:7)∈ Ll, then every known frame (the latter condition applies f such that tl i for 4.7% of the annotated targets in the SemEval 2007 development set). In both cases, we let F i be the set of candidate frames for the ith target in x. We denote the entire set of frames in the lexicon as F. f —or if tl i ∈ Ll To allow frame identification for targets whose lemmas were seen in neither the exemplars nor the training data, our model includes an additional variable, (cid:2)i. This variable ranges over the seen targets in L fi , which can be thought of as prototypes for the expression of the frame. Importantly, frames are predicted, but prototypes are summed over via the latent variable. The prediction rule requires a probabilistic model over frames for a target: fi ← argmax f ∈F i (cid:2) (cid:2)∈L f pθ(f, (cid:2) | ti, x) (1) We model the probability of a frame f and the prototype unit (cid:2), given the target and the sentence x as: pθ(f, (cid:2) | ti, x) = (cid:2) exp θ(cid:4) (cid:2) g(f, (cid:2), ti, x) , (cid:2)(cid:5) g(f exp θ(cid:4) (cid:5) , ti, x) (2) f (cid:2)∈F (cid:2)(cid:2)∈L (cid:2) f This is a conditional log-linear model: for f ∈ F f , where θ are the model weights, and g is a vector-valued feature function. This discriminative formulation is very flexible, allowing for a variety of (possibly overlapping) features; for example, a feature might relate a frame type to a prototype, represent a lexical-semantic relation- ship between a prototype and a target, or encode part of the syntax of the sentence. i and (cid:2) ∈ L Previous work has exploited WordNet for better coverage during frame identifica- tion (Burchardt, Erk, and Frank 2005; Johansson and Nugues 2007, e.g., by expanding the set of targets using synsets), and others have sought to extend the lexicon itself. We differ in our use of a latent variable to incorporate lexical-semantic features in a discriminative model, relating known lexical units to unknown words that may evoke frames. Here we are able to take advantage of the large inventory of partially annotated l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 18 Automatically predicting new frames is a challenge not yet attempted to our knowledge (including here). Note that the scoring metric (Section 3.3) gives partial credit for related frames (e.g., a more general frame from the lexicon). 19 Here each ti is a word sequence (cid:5)wu, . . . , wv (cid:6), 1 ≤ u ≤ v ≤ n, though in principle targets can be noncontiguous. 23 Computational Linguistics Volume 40, Number 1 the set of syntactic dependencies of the head word21 of ti if the head word of ti is a verb, then the set of dependency labels of its children Table 4 Features used for frame identification (Equation (2)). All also incorporate f , the frame being scored. (cid:2) = (cid:5)w(cid:2), π(cid:2) (cid:6) consists of the words and POS tags20 of a target seen in an exemplar or training sentence as evoking f . The features with starred bullets were also used by Johansson and Nugues (2007). • the POS of the parent of the head word of ti •∗ •∗ • the dependency label on the edge connecting the head of ti and its parent • the sequence of words in the prototype, w(cid:2) • the lemmatized sequence of words in the prototype • the lemmatized sequence of words in the prototype and their part-of-speech tags π(cid:2) • WordNet relation22 ρ holds between (cid:2) and ti • WordNet relation22 ρ holds between (cid:2) and ti, and the prototype is (cid:2) • WordNet relation22 ρ holds between (cid:2) and ti, the POS tag sequence of (cid:2) is π(cid:2), and the POS tag sequence of ti is πt exemplar sentences. Note that this model makes an independence assumption: Each frame is predicted independently of all others in the document. In this way the model is similar to J&N’07. However, ours is a single conditional model that shares features and weights across all targets, frames, and prototypes, whereas the approach of J&N’07 consists of many separately trained models. Moreover, our model is unique in that it uses a latent variable to smooth over frames for unknown or ambiguous LUs. Frame identification features depend on the preprocessed sentence x, the prototype (cid:2) and its WordNet lexical-semantic relationship with the target ti, and of course the frame f . Our model uses binary features, which are detailed in Table 4. 5.3 Parameter Estimation Given a training data set (either SemEval 2007 data set or the FrameNet 1.5 full text annotations), which is of the form (cid:5)(cid:5)x(j), t(j), f(j), A(j)(cid:6)(cid:6)N j=1, we discriminatively train the frame identification model by maximizing the training data log-likelihood:23 max θ N(cid:2) mj(cid:2) (cid:2) log j=1 i=1 (cid:2)∈L ( j) f i pθ( f (j) i , (cid:2) | t(j) i , x(j)) (3) In Equation (3), mj denotes the number of frames in a sentence indexed by j. Note that the training problem is non-convex because of the summed-out prototype latent 20 POS tags are found automatically during preprocessing. 21 If the target is not a subtree in the parse, we consider the words that have parents outside the span, and apply three heuristic rules to select the head: (1) choose the first word if it is a verb; (2) choose the last word if the first word is an adjective; (3) if the target contains the word of, and the first word is a noun, we choose it. If none of these hold, choose the last word with an external parent to be the head. 22 These are: IDENTICAL-WORD, SYNONYM, ANTONYM (including extended and indirect antonyms), HYPERNYM, HYPONYM, DERIVED FORM, MORPHOLOGICAL VARIANT (e.g., plural form), VERB GROUP, ENTAILMENT, ENTAILED-BY, SEE-ALSO, CAUSAL RELATION, and NO RELATION. 23 We found no benefit on either development data set from using an L2 regularizer (zero-mean Gaussian prior). 24 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Das et al. Frame-Semantic Parsing Table 5 Frame identification results on both the SemEval 2007 data set and the FrameNet 1.5 release. Precision, recall, and F1 were evaluated under exact and partial frame matching; see Section 3.3. Bold indicates best results on the SemEval 2007 data, which are also statistically significant with respect to the baseline (p < 0.05). FRAME IDENTIFICATION (§5.2) exact matching R P F1 partial matching R P F1 SemEval 2007 Data gold targets automatic targets (§4) J&N’07 targets Baseline:J&N’07 74.21 74.21 74.21 60.21 60.21 60.21 77.51 61.03 68.29 69.75 54.91 61.44 65.34 49.91 56.59 74.30 56.74 64.34 66.22 50.57 57.34 73.86 56.41 63.97 FrameNet 1.5 Release gold targets – unsupported features & – latent variable 82.97 82.97 82.97 80.30 80.30 80.30 75.54 75.54 75.54 90.51 90.51 90.51 88.91 88.91 88.91 85.92 85.92 85.92 variable (cid:2) for each frame. To calculate the objective function, we need to cope with a sum over frames and prototypes for each target (see Equation (2)), often an expensive operation. We locally optimize the function using a distributed implementation of L- BFGS.24 This is the most expensive model that we train: With 100 parallelized CPUs using MapReduce (Dean and Ghemawat 2008), training takes several hours.25 Decoding takes only a few minutes on one CPU for the test set. 5.4 Supervised Results SemEval 2007 Data. On the SemEval 2007 data set, we evaluate the performance of our frame identification model given gold-standard targets and automatically identified targets (Section 4); see Table 5. Together, our target and frame identification outperform the baseline by 4 F1 points. To compare the frame identification stage in isolation with that of J&N’07, we ran our frame identification model with the targets identified by their system as input. With partial matching, our model achieves a relative improvement of 0.6% F1 over J&N’07, as shown in the third row of Table 5 (though this is not significant). Note that for exact matching, the F1 score of the automatic targets setting is better than the gold target setting. This is due to the fact that there are many unseen predicates in the test set on which the frame identification model performs poorly; however, for the automatic targets that are mostly seen in the lexicon and training data, the model gets high precision, resulting in better overall F1 score. Our frame identification model thus performs on par with the previous state of the art for this task, and offers several advantages over J&N’s formulation of the problem: It requires only a single model, learns lexical-semantic features as part of that model rather than requiring a preprocessing step to expand the vocabulary of frame-evoking words, and is probabilistic, which can facilitate global reasoning. 24 We do not experiment with the initialization of model parameters during this non-convex optimization process; all parameters are initialized to 0.0 before running the optimizer. However, in future work, experiments can be conducted with different random initialization points to seek non-local optima. 25 In later experiments, we used another implementation with 128 parallel cores in a multi-core MPI setup (Gropp, Lusk, and Skjellum 1994), where training took several hours. 25 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Computational Linguistics Volume 40, Number 1 In the SemEval 2007 data set, for gold-standard targets, 210 out of 1,059 lemmas were not present in the white list that we used for target identification (see Section 4). Our model correctly identifies the frames for 4 of these 210 lemmas. For 44 of these lemmas, the evaluation script assigns a score of 0.5 or more, suggesting that our model predicts a closely related frame. Finally, for 190 of the 210 lemmas, a positive score is assigned by the evaluation script. This suggests that the hidden variable model helps in identifying related (but rarely exact) frames for unseen targets, and explains why under exact—but not partial—frame matching, the F1 score using automatic targets is commensurate with the score for oracle targets.26 For automatically identified targets, the F1 score falls because the model fails to predict frames for unseen lemmas. However, our model outperforms J&N’07 by 4 F1 points. The partial frame matching F1 score of our model represents a significant improvement over the baseline (p < 0.01). The precision and recall measures are significant as well (p < 0.05 and p < 0.01, respectively). However, because targets identified by J&N’07 and frames classified by our frame identification model resulted in scores on par with the baseline, we note that the significant results follow due to better target identification. Note from the results that the automatic target identification model shows an increase in precision, at the expense of recall. This is because the white list for target identification restricts the model to predict frames only for known LUs. If we label the subset of test set with already seen LUs (seen only in the training set, excluding the exemplars) with their corresponding most frequent frame, we achieve an exact match accuracy between 52.9% and 91.2%, depending on the accuracy of the unseen LUs (these bounds assume, respectively, that they are all incorrectly labeled or all correctly labeled). FrameNet 1.5 Release. The bottom three rows of Table 5 show results on the full text annotation test set of the FrameNet 1.5 release. Because the number of annotations nearly doubled, we see large improvements in frame identification accuracy. Note that we only evaluate with gold targets as input to frame identification. (As mentioned in Section 3.2, some documents in the test set have not been annotated for all targets, so evaluating automatic target identification would not be informative.) We found that 50.1% of the targets in the test set were ambiguous (i.e., they associated with more than one frame either in FrameNet or our training data). On these targets, the exact frame identification accuracy is 73.10% and the partial accuracy is 85.77%, which indicates that the frame identification model is robust to target ambiguity. On this data set, the most frequent frame baseline achieves an exact match accuracy between 74.0% and 88.1%, depending on the accuracy of the unseen LUs. We conducted further experiments with ablation of the latent variable in our frame identification model. Recall that the decoding objective used to choose a frame by marginalizing over a latent variable (cid:2), whose values range over targets known to associate with the frame f being considered (see Equations (1) and (2)) in training. How much do the prototypes, captured by the latent variable, contribute to performance? Instead of treating (cid:2) as a marginalized latent variable, we can fix its value to the observed target. 26 J&N’07 did not report frame identification results for oracle targets; thus directly comparing the frame identification models is difficult. 26 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Das et al. Frame-Semantic Parsing An immediate effect of this choice is a blow-up in the number of features; we must instantiate features (see Table 4) for all 4,194 unique targets observed in training. Because each of these features needs to be associated with all 877 frames in the partition function of Equation (2), the result is an 80-fold blowup of the feature space (the latent variable model had 465,317 features). Such a model is not computationally feasible in our engineering framework, so we considered a model using only features observed to fire at some point in the training data (called “supported” features),27 resulting in only 72,058 supported features. In Table 5, we see a significant performance drop (on both exact and partial matching accuracy) with this latent variable–free model, compared both with our latent variable model with all features and with only supported features (of which there are 165,200). This establishes that the latent variable in our frame identification model helps in terms of accuracy, and lets us use a moderately sized feature set incorporating helpful unsupported features. Finally, in our test set, we found that 144 out of the 4,458 annotated targets were un- seen, and our full frame identification model only labeled 23.1% of the frames correctly for those unseen targets; in terms of partial match accuracy, the model achieved a score of 46.6%. This, along with the results on the SemEval 2007 unseen targets, shows that there is substantial opportunity for improvement when unseen targets are presented to the system. We address this issue next. 5.5 Semi-Supervised Lexicon Expansion We next address the poor performance of our frame identification model on targets that were unseen as LUs in FrameNet or as instances in training data, and briefly describe a technique for expanding the set of lexical units with potential semantic frames that they can associate with. These experiments were carried out on the FrameNet 1.5 data only. We use a semi-supervised learning (SSL) technique that uses a graph constructed from labeled and unlabeled data. The widely used graph-based SSL framework—see Bengio, Delalleau, and Le Roux (2006) and Zhu (2008) for introductory material on this topic—has been shown to perform better than several other semi-supervised algorithms on benchmark data sets (Chapelle, Sch ¨olkopf, and Zien 2006, chapter 21). The method constructs a graph where a small portion of vertices correspond to labeled instances, and the rest are unlabeled. Pairs of vertices are connected by weighted edges denoting the similarity between the pair. Traditionally, Markov random walks (Szummer and Jaakkola 2001; Baluja et al. 2008) or optimization of a loss function based on smoothness properties of the graph (e.g., Corduneanu and Jaakkola 2003; Zhu, Ghahramani, and Lafferty 2003; Subramanya and Bilmes 2008) are performed to propagate labels from the labeled vertices to the unlabeled ones. In our work, we are interested in multi-class generalizations of graph-propagation algorithms suitable for NLP applications, where each graph vertex can assume one or more out of many possible labels (Subramanya and Bilmes 2008, 2009; Talukdar and Crammer 2009). For us, graph vertices correspond to natural language types (not tokens) and undirected edges between them are weighted using a similarity metric. Recently, this set-up has been used to learn soft labels on natural language types (say, word n-grams or in our case, syntactically disambiguated 27 The use of unsupported features (i.e., those that can fire for an analysis in the partition function but not observed to fire in the training data) has been observed to give performance improvements in NLP problems; see, for example, Sha and Pereira (2003) and Martins et al. (2010). 27 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Computational Linguistics Volume 40, Number 1 predicates) from seed data, resulting in large but noisy lexicons, which are used to constrain structured prediction models. Applications have ranged from domain adap- tation of sequence models (Subramanya, Petrov, and Pereira 2010) to unsupervised learning of POS taggers by using bilingual graph-based projections (Das and Petrov 2011). We describe our approach to graph construction, propagation for lexicon expansion, and the use of the result to impose constraints on frame identification. 5.5.1 Graph Construction. We construct a graph with lexical units as vertices. Thus, each vertex corresponds to a lemmatized word or phrase appended with a coarse POS tag. We use two resources for graph construction. First, we take all the words and phrases present in a dependency-based thesaurus constructed using syntactic cooccurrence statistics (Lin 1998), and aggregate words and phrases that share the same lemma and coarse POS tag. To construct this resource, Lin used a corpus containing 64 million words that was parsed with a fast dependency parser (Lin 1993, 1994), and syntactic contexts were used to find similar lexical items for a given word or phrase. Lin sepa- rately treated nouns, verbs, and adjectives/adverbs, so these form the three parts of the thesaurus. This resource gave us a list of possible LUs, much larger in size than the LUs present in FrameNet data. The second component of graph construction comes from FrameNet itself. We scanned the exemplar sentences in FrameNet 1.5 and the training section of the full text annotations and gathered a distribution over frames for each LU appearing in FrameNet data. For a pair of LUs, we measured the Euclidean distance between their frame distributions. This distance was next converted to a similarity score and inter- polated with the similarity score from Lin’s dependency thesaurus. We omit further details about the interpolation and refer the reader to full details given in Das and Smith (2011). For each LU, we create a vertex and link it to the K nearest neighbor LUs under the interpolated similarity metric. The resulting graph has 64,480 vertices, 9,263 of which are labeled seeds from FrameNet 1.5 and 55,217 of which are unlabeled. Each vertex has a possible set of labels corresponding to the 877 frames defined in the lexicon. Figure 4 shows an excerpt from the constructed graph. Figure 4 Excerpt from our constructed graph over LUs. Green LUs are observed in the FrameNet 1.5 data. Above/below them are shown the most frequently observed frame that these LUs associate with. The black LUs are unobserved and graph propagation produces a distribution over most likely frames that they could evoke as target instances. 28 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Das et al. Frame-Semantic Parsing 5.5.2 Propagation by Optimization. Once the graph is constructed, the 9,263 seed ver- tices with supervised frame distributions are used to propagate the semantic frame information via their nearest neighbors to all vertices. Here we discuss two graph- based SSL objective functions. Das and Smith (2012) compare several other graph-based SSL algorithms for this problem; we refer the interested reader to that paper. Let V denote the set of all vertices in our graph, ˆV ⊂ V be the set of seed vertices, and F denote the set of all frames. Let N (v) denote the set of neighbors of vertex v ∈ V. Let q = {q1, q2, . . . , q|V|} be the set of frame distributions, one per vertex. For each seed vertex v ∈ ˆV, we have a supervised frame distribution ˆqv. All edges in the graph are weighted according to the aforementioned interpolated similarity score, denoted wuv for the edge adjacent to vertices u and v. We find q by solving: NGF-(cid:2)2 : arg min q, s.t. q≥0, ∀v∈V,(cid:9)qv (cid:9) 1=1 (cid:2) v∈ ˆV (cid:11) ˆqv − qv (cid:11)2 2 + μ (cid:2) v∈V,u∈N (v) wuv (cid:11)qv − qu (cid:11)2 2 + ν (cid:2) v∈V (cid:11)qv − 1 |F| (cid:11)2 2 (4) We call the objective in Equation (4) NGF-(cid:2)2 because it uses normalized probability dis- tributions at each vertex and is a Gaussian field; it also utilizes a uniform (cid:2)2 penalty—the third term in the objective function. This is a multiclass generalization of the quadratic cost criterion (Bengio, Delalleau, and Le Roux 2006), also used by Subramanya, Petrov, and Pereira (2010) and Das and Petrov (2011). Our second graph objective function is as follows: UJSF-(cid:2)1,2 : arg min q, s.t. q≥0 (cid:2) v∈ ˆV DJS( ˆqv (cid:11)qv) + μ (cid:2) v∈V,u∈N (v) wuvDJS(qv (cid:11)qu) + ν (cid:2) v∈V (cid:11)qv (cid:11)2 1 (5) We call it UJSF-(cid:2)1,2 because it uses unnormalized probability measures at each vertex and is a Jensen-Shannon field, utilizing pairwise Jensen-Shannon divergences (Lin 1991; Burbea and Rao 2006) and a sparse (cid:2)1,2 penalty (Kowalski and Torr´esani 2009) as the third term. Das and Smith (2012) proposed the objective function in Equation (5). It seeks at each graph vertex a sparse measure, as we expect in a lexicon (i.e., few frames have nonzero probability for a given target). These two graph objectives can be optimized by iterative updates, whose details we omit in this article; more information about the motivation behind using the (cid:2)1,2 penalty in the UJSF-(cid:2)1,2 objective, the optimization procedure, and an empirical comparison of these and other objectives on another NLP task can be found in Das and Smith (2012). 5.5.3 Constraints for Frame Identification. Once a graph-based SSL objective function is minimized, we arrive at the optimal set of frame distributions q , which we use to constrain our frame identification inference rule, expressed in Equation (1). In that rule, ti is the ith target in a sentence x, and fi is the corresponding evoked frame. We now add a constraint to that rule. Recall from Section 5.2 that for targets with known lemmatized forms, F i was defined to be the set of frames that associate with lemma tl i in the supervised data. For unknown lemmas, F i was defined to be all the frames in the lexicon. If the LU corresponding to ti is present in the graph, let it be the vertex vi. For such targets ti covered by the graph, we redefine F i as: ∗ F i = {f : f ∈ M-best frames under q } ∗ vi (6) 29 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Computational Linguistics Volume 40, Number 1 Table 6 Exact and partial frame identification accuracy on the FrameNet 1.5 data set with the size of lexicon (in terms of non-zero frame components in the truncated frame distributions) used for frame identification, given gold targets. The supervised model is compared with alternatives in Table 5. Bold indicates best results. UJSF-(cid:2)1,2 produces statistically significant results (p < 0.001) for all metrics with respect to the supervised baseline for both the unseen LUs as well as the whole test set. Although the NGF-(cid:2)2 and UJSF-(cid:2)1,2 models are statistically indistinguishable, it is noteworthy that the UJSF-(cid:2)1,2 objective produces a much smaller lexicon. UNKNOWN TARGETS exact partial ALL TARGETS exact partial frame matching frame matching frame matching frame matching Supervised Self-training NGF-(cid:2)2 UJSF-(cid:2)1,2 23.08 18.88 39.86 42.67 46.62 42.67 62.35 65.29 82.97 82.27 83.51 83.60 90.51 90.02 91.02 91.12 Graph Lexicon Size – – 128,960 45,544 For targets ti in test data whose LUs are not present in the graph (and hence in supervised data), F i is the set of all frames. Note that in this semi-supervised extension of our frame identification inference procedure, we introduced several hyperparam- eters, namely, μ, ν, K (the number of nearest neighbors for each vertex included in the graph) and M (the number of highest scoring frames per vertex according to the induced frame distribution). We choose these hyperparameters using cross-validation by tuning the frame identification accuracy on unseen targets. (Different values of the first three hyperparameters were chosen for the different graph objectives and we omit their values here for brevity; M turned out to be 2 for all models.) Table 6 shows frame identification accuracy, both using exact match as well as partial match. Performance is shown on the portion of the test set containing unknown LUs, as well as the whole test set. The final column presents lexicon size in terms of the set of truncated frame distributions (filtered according to the top M frames in qv for a vertex v) for all the LUs in a graph. For comparison with a semi-supervised baseline, we consider a self-trained system. For this system, we used the supervised frame identification system to label 70,000 sentences from the English Gigaword corpus with frame-semantic parses. For finding targets in a raw sentence, we used a relaxed target identification scheme, where we marked as potential frame-evoking units all targets seen in the lexicon and all other words which were not prepositions, particles, proper nouns, foreign words, or WH-words. We appended these automatic annotations to the training data, resulting in 711,401 frame annotations, more than 36 times the annotated data. These data were next used to train a frame identification model.28 This set-up is very similar to that of Bejan (2009) who used self-training to improve frame identification. In our setting, however, self-training hurts relative to the fully supervised approach (Table 6). Note that for the unknown part of the test set the graph-based objectives outperform both the supervised model as well as the self-training baseline by a margin of ∼20% 28 We ran self-training with smaller amounts of data, but found no significant difference with the results achieved with 711,401 frame annotations. As we observe in Table 6, in our case, self-training performs worse than the supervised model, and we do not hope to improve with even more data. 30 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Das et al. Frame-Semantic Parsing absolute. The best model is UJSF-(cid:2)1,2, and its performance is significantly better than the supervised model (p < 0.01). It also produces a smaller lexicon (using the sparsity- inducing penalty) than NGF-(cid:2)2, requiring less memory during frame identification inference. The small footprint can be attributed to the removal of LUs for which all frame components were zero (qi = 0). The improvements of the graph-based objectives over the supervised and the self-trained models are modest for the whole test set, but the best model still has statistically significant improvements over the supervised model (p < 0.01). 6. Argument Identification (cid:6), and a list of evoked Given a sentence x = (cid:5)x1, . . . , xn frames f = (cid:5)f1, . . . , fm (cid:6) corresponding to each target, argument identification is the task of choosing which of each fi’s roles are filled, and by which parts of x. This task is most similar to the problem of semantic role labeling, but uses a richer set of frame-specific labels than PropBank annotations. (cid:6), the set of targets t = (cid:5)t1, . . . , tm 6.1 Model fi fi = {r1, . . . , r|R |} denote frame fi’s roles (named frame element types) observed Let R in an exemplar sentence and/or our training set. A subset of each frame’s roles are marked as core roles; these roles are conceptually and/or syntactically necessary for any given use of the frame, though they need not be overt in every sentence involving the frame. These are roughly analogous to the core arguments ARG0–ARG5 in PropBank. Non-core roles—analogous to the various ARGM-* in PropBank—loosely correspond to syntactic adjuncts, and carry broadly applicable information such as the time, place, or purpose of an event. The lexicon imposes some additional structure on roles, in- cluding relations to other roles in the same or related frames, and semantic types with respect to a small ontology (marking, for instance, that the entity filling the protag- onist role must be sentient for frames of cognition). Figure 3 illustrates some of the structural elements comprising the frame lexicon by considering the CAUSE TO MAKE NOISE frame. We identify a set S of spans that are candidates for filling any role r ∈ R fi . In principle, S could contain any subsequence of x, but in this work we only consider the set of contiguous spans that (a) contain a single word or (b) comprise a valid subtree of a word and all its descendants in the dependency parse produced by the MST parser. This covers approximately 80% of arguments in the development data for both data sets. The empty span, denoted ∅, is also included in S, since some roles are not explicitly filled; in the SemEval 2007 development data, the average number of roles an evoked frame defines is 6.7, but the average number of overt arguments is only 1.7.29 In 29 In the annotated data, each core role is filled with one of three types of null instantiations indicating how the role is conveyed implicitly. For instance, the imperative construction implicitly designates a role as filled by the addressee, and the corresponding filler is thus CNI (constructional null instantiation). In this work we do not distinguish different types of null instantiation. The interested reader may refer to Chen et al. (2010), who handle the different types of null instantions during argument identification. 31 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Computational Linguistics Volume 40, Number 1 training, if a labeled argument is not a subtree of the dependency parse, we add its span to S.30 Let A i denote the mapping of roles in R fi to spans in S. Our model makes a prediction for each A i(rk) (for all roles rk ∈ R fi ) using: A i(rk) ← argmax s∈S pψ(s | rk, fi, ti, x) (7) We use a conditional log-linear model over spans for each role of each evoked frame: pψ(A i(rk) = s | fi, ti, x) = exp ψ(cid:4) (cid:2) h(s, rk, fi, ti, x) exp ψ(cid:4) h(s (cid:5) , rk, fi, ti, x) (8) s(cid:2)∈S Note that our model chooses the span for each role separately from the other roles and ignores all frames except the frame the role belongs to. Our model departs from the traditional SRL literature by modeling the argument identification problem in a single stage, rather than first classifying token spans as arguments and then labeling them. A constraint implicit in our formulation restricts each role to have at most one overt argument, which is consistent with 96.5% of the role instances in the SemEval 2007 training data and 96.4% of the role instances in the FrameNet 1.5 full text annotations. Out of the overt argument spans in the training data, 12% are duplicates, having been used by some previous frame in the sentence (supposing some arbitrary ordering of frames). Our role-filling model, unlike a sentence-global argument detection-and- classification approach,31 permits this sort of argument sharing among frames. Word tokens belong to an average of 1.6 argument spans, including the quarter of words that do not belong to any argument. Appending together the local inference decisions from Equation (7) gives us the best mapping ˆA t for target t. Features for our log-linear model (Equation (8)) depend on the preprocessed sentence x; the target t; a role r of frame f ; and a candidate argument span s ∈ S.32 For features using the head word of the target t or a candidate argument span s, we use the heuristic described in footnote 21 for selecting the head of non-subtree spans. Table 7 lists the feature templates used in our model. Every feature template has a version that does not take into account the role being filled (so as to incorporate overall biases). The (cid:2)(cid:3) symbol indicates that the feature template also has a variant that is conjoined with r, the name of the role being filled; and (cid:4) indicates that the feature 30 Here is an example in the FrameNet 1.5 training data where this occurs. In the sentence: As capital of Europe’s most explosive economy, Dublin seems to be changing before your very eyes, the word economy evokes the ECONOMY frame with the phrase most explosive fulfilling the Descriptor role. However, in the dependency parse for the sentence the phrase is not a subtree because both words in the frame attach to the word economy. Future work may consider better heuristics to select potential arguments from the dependency parses to recover more gold arguments than what the current work achieves. 31 J&N’07, like us, identify arguments for each target. 32 In this section we use t, f , and r without subscripts because the features only consider a single role of a single target’s frame. 32 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Das et al. Frame-Semantic Parsing Table 7 Features used for argument identification. Section 6.1 describes the meanings of the different circles attached to each feature. Features with both null and non-null variants: These features come in two flavors: if the argument is null, then one version fires; if it is overt (non-null), then another version fires. (cid:2) some word in t has lemma λ (cid:3)(cid:4) some word in t has lemma λ, and the sentence uses PASSIVE voice (cid:3)(cid:4) the head of t has subcategorization sequence τ = (cid:5)τ1, τ2, . . . (cid:6) (cid:2) the head of t has c syntactic dependents (cid:2) some word in t has POS π (cid:3)(cid:4) some word in t has lemma λ, and the sentence uses ACTIVE voice (cid:3)(cid:4) some syntactic dependent of the head of t has dependency type τ (cid:2) bias feature (always fires) Span content features: apply to overt argument candidates. (cid:4) POS tag π occurs for some word in s (cid:4) the first word of s has POS π (cid:4) the last word of s has POS π (cid:4) the head word of s has syntactic dependency type τ (cid:2) ws2 and its closed-class POS tag πs2 , provided that |s| ≥ 2 (cid:4) the head word of s has lemma λ (cid:4) the last word of s: ws|s| has lemma λ (cid:2) ws|s| , and its closed-class POS tag πs|s| , (cid:3)(cid:4) lemma λ is realized in some word in s, the voice denoted in the span (ACTIVE or PASSIVE) provided that |s| ≥ 3 (cid:4) the head word of s has POS π (cid:2) |s|, the number of words in the span (cid:4) the first word of s has lemma λ (cid:2) the first word of s: ws1 , and its POS tag πs1 , if πs1 is a closed-class POS (cid:2) the syntactic dependency type τs1 of the first word with respect to its head (cid:2) τs2 , provided that |s| ≥ 2 (cid:2) τs|s| , provided that |s| ≥ 3 (cid:3)(cid:4) lemma λ is realized in some word in s (cid:3)(cid:4) lemma λ is realized in some word in s, the voice denoted in the span, s’s position with respect to t (BEFORE, AFTER, or OVERLAPPING) Syntactic features: apply to overt argument candidates. (cid:4) dependency path: sequence of labeled, (cid:4) length of the dependency path directed edges from the head word of s to the head word of t Span context POS features: for overt candidates, up to 6 of these features will be active. (cid:4) a word with POS π occurs up to 3 words (cid:4) a word with POS π occurs up to 3 words before the first word of s after the last word of s Ordering features: apply to overt argument candidates. (cid:2) the position of s with respect to the span of t: BEFORE, AFTER, or OVERLAPPING (i.e. there is at least one word shared by s and t) (cid:4) linear word distance between the nearest word of s and the nearest word of t, provided s and t do not overlap (cid:4) target-argument crossing: there is at least one word shared by s and t, at least one word in s that is not in t, and at least one word in t that is not in s (cid:4) linear word distance between the middle word of s and the middle word of t, provided s and t do not overlap template additionally has a variant that is conjoined with both r and f , the name of the frame.33 The role-name-only variants provide for smoothing over frames for common types of roles such as Time and Place; see Matsubayashi, Okazaki, and Tsujii (2009) for a detailed analysis of the effects of using role features at varying levels of granularity. Certain features in our model rely on closed-class POS tags, which are defined to be all Penn Treebank tags except for CD and tags that start with V, N, J, or R. Finally, the 33 That is, the (cid:2) symbol subsumes (cid:3)(cid:4), which in turn subsumes (cid:4). 33 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Computational Linguistics Volume 40, Number 1 features that encode a count or a number are binned into groups: (−∞, −20], [−19, −10], [−9, −5], −4, −3, −2, −1, 0, 1, 2, 3, 4, [5, 9], [10, 19], [20, ∞). 6.2 Parameter Estimation We train the argument identification model by: N(cid:2) mj(cid:2) | |R (j) (cid:2) f i max ψ j=1 i=1 k=1 log pψ(A(j) i (rk) | f (j) i , t(j) i , x(j)) − C (cid:11)ψ(cid:11)2 2 (9) Here, N is the number of data points (sentences) in the training set, and m is the number of frame annotations per sentence. This objective function is concave. For experiments with the SemEval 2007 data, we trained the model using stochastic gradient ascent (Bottou 2004) with no Gaussian regularization (C = 0).34 Early stopping was done by tuning on the development set, and the best results were obtained with a batch size of 2 and 23 passes through the data. On the FrameNet 1.5 release, we trained this model using L-BFGS (Liu and Nocedal 1989) and ran it for 1,000 iterations. C was tuned on the development data, and we obtained best results for C = 1.0. We did not use stochastic gradient descent for this data set as the number of training instances increased and parallelization of L-BFGS on a multicore setup implementing MPI (Gropp, Lusk, and Skjellum 1994) gave faster training speeds. 6.3 Decoding with Beam Search Naive prediction of roles using Equation (7) may result in overlap among arguments filling different roles of a frame, because the argument identification model fills each role independently of the others. We want to enforce the constraint that two roles of a single frame cannot be filled by overlapping spans.35 Toutanova, Haghighi, and Manning (2005) presented a dynamic programming algorithm to prevent overlapping arguments for SRL; however, their approach used an orthogonal view to the argument identi- fication stage, wherein they labeled phrase-structure tree constituents with semantic roles. That formulation admitted a dynamic programming approach; our formulation of finding the best argument span for each role does not. To eliminate illegal overlap, we adopt the beam search technique detailed in Algorithm 1. The algorithm produces a set of k-best hypotheses for a frame instance’s full set of role-span pairs, but uses an approximation in order to avoid scoring an exponential number of hypotheses. After determining which roles are most likely not explicitly filled, it considers each of the other roles in turn: In each iteration, hypotheses incorporating a subset of roles are extended with high-scoring spans for the next role, always maintaining k alternatives. We set k=10,000 as the beam width.36 34 This was the setting used by Das et al. (2010) and we kept it unchanged. 35 On rare occasions a frame annotation may include a secondary frame element layer, allowing arguments to be shared among multiple roles in the frame; see Ruppenhofer et al. (2006) for details. The evaluation for this task only considers the primary layer, which is guaranteed to have disjoint arguments. 36 We show the effect of varying beam widths in Table 9, where we present performance of an exact algorithm for argument identification. 34 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Das et al. Frame-Semantic Parsing , resulting in k best extensions overall. fi , S, the distribution pψ from Equation 8 for each role rj i, a high-scoring mapping of roles of fi to spans with no token overlap among Algorithm 1 Joint decoding of frame fi’s arguments via beam search. topk(S, pψ, rj) extracts the k most probable spans from S, under pψ, for role rj. extend(D0:(j−1), S (cid:5) ) extends each span vector in D0:(j−1) with the most probable non-overlapping span from S (cid:5) Require: k > 0, R
ˆA
Ensure:
the spans
1: Calculate A
2: ∀r ∈ R
3: R+
{r : r ∈ R
fi
4: n ← |R+
|
fi
5: Arbitrarily order R+
fi
1 , . . . , D0:j
6: Let D0:j = (cid:5)D0:j

i according to Equation 7
i(r) = ∅, dejar
i(r) (cid:7)= ∅}

(cid:6) refer to the k-best list of vectors of compatible filler spans

fi such that A
fi , A

como {r1, r2, . . . rn

i(r) ← ∅

∈ R

ˆA

}

fi

k

for roles r1 through rj
7: Initialize D0:0 to be empty
8: for j = 1 to n do
9: D0:j ← extend(D0:(j−1), topk(S, , rj))
10: end for
11: ∀j ∈ {1, . . . , norte}, ˆA
12: return ˆA

i(rj) ← D0:norte

1 [j]

i

6.4 Resultados

Performance of the argument identification model is presented in Table 8 for both data
sets in consideration. We analyze them here.

SemEval 2007 Datos: For the SemEval data set, the table shows how performance
varies given different types of input: correct targets and correct frames, correct targets
but automatically identified frames, y ultimamente, no oracle input (the full frame
parsing scenario). Rows 1–2 isolate the argument identification task from the frame
identification task. Given gold targets and frames, our argument identification model
(without beam search) gets an F1 score of 68.09%; when beam search is applied, este
increases to 68.46%, with a noticeable increase in precision. Note that an estimated 19%
of correct arguments are excluded because they are neither single words nor complete
subtrees (mira la sección 6.1) of the automatic dependency parses.37

Cualitativamente, the problem of candidate span recall seems to be largely due to
syntactic parse errors.38 Although our performance is limited by errors when using
the syntactic parse to determine candidate spans, it could still improve; this suggests

37 We found that using all constituents from the 10-best syntactic parses would improve oracle recall of

spans in the development set by just a couple of percentage points, at the computational cost of a larger
pool of candidate arguments per role.

38 Tenga en cuenta que, because of our labels-only evaluation scheme (Sección 3.3), arguments missing a word or

containing an extra word receive no credit. De hecho, of the frame roles correctly predicted as having an
overt span, the correct span was predicted 66% of the time, mientras 10% of the time the predicted starting
and ending boundaries of the span were off by a total of one or two words.

35

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Ligüística computacional

Volumen 40, Número 1

,

norte
oh
i
t
a
C
fi
i
t
norte
mi
d

i

t
norte
mi
metro
tu
gramo
r
a
r
oh
F

mi
d
a
metro
norte
mi
mi
b
mi
v
a
h
s
norte
oh
i
s
i
C
mi
d
t
norte
mi
d
norte
mi
pag
mi
d
norte
i

yo
a
C
oh
yo

r
oh
d
mi
s
tu
norte
mi
mi
b
s
a
h
metro
h
t
i
r
oh
gramo
yo
a
gramo
norte
i
d
oh
C
mi
d
t
norte
i
oh

j

mi
t
a
metro
i
X
oh
r
pag
pag
a
mi
h
t

r
mi
h
t
mi
h
w
mi
t
a
C
i
d
norte

i

h
C
i
h
w

,
s
t
yo
tu
s
mi
r

t
s
mi
b
mi
t
a
C
i
d
norte
i

s
mi
r
oh
C
s
d
yo
oh
b

,
)
norte
oh
i
t
a
C
fi
i
t
norte
mi
d

i

t
norte
mi
metro
tu
gramo
r
a
d
norte
a
,
mi
metro
a
r
F

,
t
mi
gramo
r
a
t

C
i
t
a
metro
oh
t
tu
a
(
gramo
norte
i
s
r
a
pag

yo
yo

tu
F

r
oh
F

,
a
t
a
d
7
0
0
2
yo
a
v
mi
metro
mi
S
mi
h
t
norte
oh
y
yo
mi
v
i
t
C
mi
pag
s
mi
r

.

C
i
t
a
metro
oh
t
tu
a
norte
oh
s
t
yo
tu
s
mi
r

t
s
mi
b
mi
t
a
C
i
d
norte
i

s
mi
r
oh
C
s
d
yo
oh
b

,
t
mi
s
a
t
a
d
5
.
1
t
mi
norte
mi
metro
a
r
F
mi
h
t
norte
oh

.
)
5
0
.
0
< p ( e n i l e s a b e h t o t e v i t a l e r s t n e m e v o r p m i i t n a c fi n g i s o s l a e r a e v i a n d n a m a e b , g n i d o c e d r o F . 5 . 1 t e N e m a r F f o s n o i t a t o n n a t x e t l l u f e h t s a l l e w s a a t a d 7 0 ’ l a v E m e S e h t h t o b n o s t l u s e r n o i t a c fi i t n e d i t n e m u g r A 8 e l b a T 36 f o s m r e t n I . ) 1 0 0 . 0 < p ( 9 w o r n i n w o h s s t l u s e r d e s i v r e p u s e h t r e v o t n a c fi i n g i s y l l a c i t s i t a t s s i t l u s e r s i h T . h c r a e s m a e b g n i s u n o i t a c fi i t n e d i t n e m u g r a c i t a m o t u a d n a e v i t c e b o - h p a r g j 2 , 1 (cid:2) - F S J U e h t s e s u t a h t l e d o m n o i t a c fi i t n e d i e m a r f e h t y b d e v e i h c a s i s i h t — n o i t a c fi i t n e d i t n e m u g r a d n a e m a r f l e d o m 2 (cid:2) - F G N e h t r e v o t n a c fi i n g i s y l l a c i t s i t a t s s i l e d o m 2 , 1 (cid:2) - F S J U e h t h t i w s t l u s e r e h t , g n i h c t a m e m a r f l a i t r a p h t i w d e r u s a e m e r o c s 1 F d n a n o i s i c e r p j s e v i t c e b o h p a r g o w t e h t h t i w s t l u s e r e h t , g n i h c t a m e m a r f t c a x e h t i w s c i r t e m e e r h t e h t l l a r o f d n a , g n i h c t a m e m a r f l a i t r a p h t i w l l a c e r r o F . ) 5 0 . 0 < p ( r o f d e s u n e e b e v a h s e m a r f d l o g , s g n i t t e s e s o h t n i e s u a c e b g n i s s i m e r a s t l u s e r h c t a m l a i t r a p n i a t r e c t a h t e t o N . e l b a h s i u g n i t s i d n i y l l a c i t s i t a t s e r a . n o i t a c fi i t n e d i t n e m u g r a g n i h c t a m l a i t r a p g n i h c t a m t c a x e g n i d o c e d s e m a r f s t e g r a t N O I T A C I F I T N E D I T N E M U G R A 1 2 3 4 5 6 7 8 9 0 1 1 1 1 F R P 6 5 3 5 . 4 2 0 5 . 9 0 8 4 . 6 8 9 4 . 9 8 1 4 . 0 7 9 3 . 5 8 7 5 . 6 7 2 6 . 8 9 0 6 . 1 F 9 0 . 8 6 6 4 . 8 6 0 0 . 6 4 9 4 . 6 4 7 3 . 4 4 R P 6 7 . 0 6 7 5 . 0 6 2 8 . 2 4 6 7 . 8 3 3 6 . 6 3 3 4 . 7 7 1 7 . 8 7 8 6 . 9 4 8 0 . 8 5 6 2 . 6 5 e v i a n m a e b m a e b m a e b m a e b ) 2 . 5 § ( d e s i v r e p u s ) 2 . 5 § ( d e s i v r e p u s ) 4 . 3 § ( d e s i v r e p u s d l o g d l o g d l o g d l o g d l o g o t u a o t u a 2 6 . 5 4 8 4 . 8 3 1 0 . 6 5 1 0 . 2 4 4 4 . 5 3 9 5 . 1 5 A / N ) 4 . 3 § ( d e s i v r e p u s o t u a 5 4 8 6 . 2 8 8 6 . 3 9 8 6 . 5 8 4 6 . 0 2 5 6 . 0 3 5 6 . 7 4 2 7 . 7 8 2 7 . 8 9 2 7 . 8 0 . 9 7 8 8 . 9 7 5 0 . 4 6 3 4 . 4 6 4 5 . 4 6 6 3 . 6 7 8 2 . 6 7 8 6 . 0 6 4 0 . 1 6 4 1 . 1 6 0 0 . 2 8 3 8 . 3 8 1 8 . 7 6 2 2 . 8 6 3 3 . 8 6 e v i a n m a e b m a e b m a e b m a e b ) 2 . 5 § ( d e s i v r e p u s d l o g d l o g ) 5 . 5 § , 2 , 1 (cid:2) - F S J U ) 5 . 5 § , 2 (cid:2) - F G N ( L S S ( L S S d l o g d l o g d l o g d l o g d l o g ) s t e g r a t e l c a r o ( g n i s r a P ) l l u f ( g n i s r a P s t e g r a t 7 0 ’ N & J ( g n i s r a P 7 0 ’ N & J : e n i l e s a B ) s e m a r f d n a ) l l u f ( n o i t a c fi i t n e d i t n e m u g r A ) l l u f ( n o i t a c fi i t n e d i t n e m u g r A ) s t e g r a t e l c a r o ( g n i s r a P a t a D 7 0 ’ l a v E m e S e s a e l e R 5 . 1 t e N e m a r F l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Das et al. Frame-Semantic Parsing that the model has trouble discriminating between good and bad arguments, and that additional feature engineering or jointly decoding arguments of a sentence’s frames may be beneficial. Rows 3–4 show the effect of automatic supervised frame identification on overall frame parsing performance. There is a 22% absolute decrease in F1 (18% when partial credit is given for related frames), suggesting that improved frame identification or joint prediction of frames and arguments is likely to have a sizeable impact on overall performance. Rows 4–6 compare our full model (target, frame, and argument identification) with the baseline, showing significant improvement of more than 4.4 F1 points for both exact and partial frame matching. As with frame identification, we compared the argument identification stage with that of J&N’07 in isolation, using the automatically identified targets and frames from the latter as input to our model. As shown in row 5, with partial frame matching, this gave us an F1 score of 48.1% on the test set—significantly better (p < 0.05) than 45.6%, the full parsing result from J&N’07 (row 6 in Table 8). This indicates that our argument identification model—which uses a single discriminative model with a large number of features for role filling (rather than argument labeling)—is more accurate than the previous state of the art. FrameNet 1.5 Release: Rows 7–12 show results on the newer data set, which is part of the FrameNet 1.5 release. As in the frame identification results of Table 5, we do not show results using predicted targets, as we only test the performance of the statistical models. First, we observe that for results with gold frames, the F1 score is 79.08% with naive decoding, which is significantly higher than the SemEval counterpart. This indicates that increased training data greatly improves performance on the task. We also observe that beam search improves precision by nearly 2%, while getting rid of overlap- ping arguments. When both model frames and model arguments are used, we get an F1 score of 68.45%, which is encouraging in comparison to the best results we achieved on the SemEval 2007 data set. Semi-supervised lexicon expansion for frame identifi- cation further improves parsing performance. We observe the best results when the UJSF-(cid:2)1,2 graph objective is used for frame identification, significantly outperforming the fully supervised model on parsing (p < 0.001) for all evaluation metrics. The im- provements with SSL can be explained by noting that frame identification performance goes up when the graph objectives are used, which carries over to argument iden- tification. Figure 5 shows an example where the graph-based model UJSF-(cid:2)1,2 corrects an error made by the fully supervised model for the unseen LU discrepancy.N, both for frame identification and full frame-semantic parsing. 7. Collective Argument Identification with Constraints The argument identification strategy described in the previous section does not capture some facets of semantic knowledge represented declaratively in FrameNet. In this section, we present an approach that exploits such knowledge in a principled, unified, and intuitive way. In prior NLP research using FrameNet, these interactions have been largely ignored, though they have the potential to improve the quality and consistency of semantic analysis. The beam search technique (Algorithm 1) handles one kind of constraint: avoiding argument overlaps. It is, however, approximate and cannot handle other forms of constraints. Here, we present an algorithm that exactly identifies the best full collection of argu- ments of a target given its semantic frame. Although we work within the conventions of 37 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Computational Linguistics Volume 40, Number 1 Figure 5 (a) Output of the supervised frame-semantic parsing model, with beam search for argument identification, given the target discrepancies. The output is incorrect. (b) Output using the constrained frame identification model that takes into account the graph-based frame distributions over unknown predicates. In this particular example, the UJSF-(cid:2)1,2 graph objective is used. This output matches the gold annotation. The LU discrepancy.N is unseen in supervised FrameNet data. FrameNet, our approach is generalizable to other SRL frameworks. We model argument identification as constrained optimization, where the constraints come from expert knowledge encoded in FrameNet. Following prior work on PropBank-style SRL that dealt with similar constrained problems (Punyakanok et al. 2004; Punyakanok, Roth, and Yih 2008, inter alia), we incorporate this declarative knowledge in an integer linear program. Because general-purpose ILP solvers are proprietary and do not fully exploit the structure of the problem, we turn to a class of optimization techniques called dual decomposition (Komodakis, Paragios, and Tziritas 2007; Rush et al. 2010; Martins et al. 2011a). We derive a modular, extensible, parallelizable approach in which semantic con- straints map not just to declarative components in the algorithm, but also to procedural ones, in the form of “workers.” Although dual decomposition algorithms only solve a relaxation of the original problem, we make our approach exact by wrapping the algorithm in a branch-and-bound search procedure. 39 We experimentally find that our algorithm achieves accuracy comparable to the results presented in Table 8, while respecting all imposed linguistic constraints. In comparison with beam search, which violates many of these constraints, the presented exact decoder is slower, but it decodes nine times faster than CPLEX, a state-of-the-art, proprietary, general-purpose exact ILP solver.40 39 Open-source code in C++ implementing the AD3 algorithm can be found at http://www.ark.cs.cmu.edu/AD3. 40 See http://www-01.ibm.com/software/integration/optimization/cplex-optimizer. 38 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Das et al. Frame-Semantic Parsing 7.1 Joint Inference Here, we take a declarative approach to modeling argument identification using an ILP and relate our formulation to prior work in shallow semantic parsing. We show how knowledge specified in a linguistic resource (FrameNet in our case) can be used to derive the constraints in our ILP. Finally, we draw connections of our specification to graphical models, a popular formalism in artificial intelligence and machine learning, and describe how the constraints can be treated as factors in a factor graph. 7.1.1 Declarative Specification. Let us simplify notation by considering a given target t and not considering its index in a sentence x; let the semantic frame it evokes be f . To solely evaluate argument identification, we assume that the semantic frame f is given, which is traditionally the case in controlled experiments used to evaluate SRL systems (M`arquez et al. 2008). Let the set of roles associated with the frame f be R f . In sentence x, the set of candidate spans of words that might fill each role is enumerated, usually following an overgenerating heuristic, which is described in Section 6.1; as before, we call this set of spans S. As before, this set also includes the null span ∅; connecting it to a role r ∈ R f denotes that the role is not overt. Our approach assumes a scoring function that gives a strength of association between roles and candidate spans. For each role r ∈ R f and span s ∈ S, this score is parameterized as: c(r, s) = ψ(cid:4) h(s, r, f, t, x), (10) l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 where ψ are model weights and h is a feature function that looks at the target t, the evoked frame f , sentence x, and its syntactic analysis, along with r and s. This scoring function is identical in form to the numerator’s exponent in the log-linear model described in Equation (8). The SRL literature provides many feature functions of this form and many ways to use machine learning to acquire ψ. Our presented method does not make any assumptions about the score except that it has the form in Equation (10). ∈ {0, 1} for every role and span pair. We have that: z ∈ {0, 1}d, where d = |R | × |S|. zr,s = 1 means that role r is filled by span s. Given the binary z vector, it is straightforward to recover the collection of arguments by checking which components zr,s have an assignment of 1; we use this strategy to find arguments, as described in Section 7.3 (strategies 4 and 6). The joint argument identification task can be represented as a constrained optimization problem: We define a vector z of binary variables zr,s f maximize (cid:2) (cid:2) r∈R f s∈S c(r, s) × zr,s with respect to such that z ∈ {0, 1}d Az ≤ b (11) In the last line, A is a k × d matrix and b is a vector of length k. Thus, Az ≤ b is a set of k inequalities representing constraints that are imposed on the mapping between roles and spans; these are motivated on linguistic grounds and are described next. 41 41 Note that equality constraints a · z = b can be transformed into double-side inequalities a · z ≤ b and −a · z ≤ −b. 39 Computational Linguistics Volume 40, Number 1 Uniqueness. Each role r is filled by at most one span in S. This constraint can be expressed by: ∀r ∈ R f , (cid:2) s∈S zr,s = 1 (12) There are O(|R |) such constraints. Note that because S contains the null span ∅, non- overt roles are also captured using the above constraints. Such a constraint is used extensively in prior literature (Punyakanok, Roth, and Yih 2008, Section 3.4.1). f Overlap. SRL systems commonly constrain roles to be filled by non-overlapping spans. For example, Toutanova, Haghighi, and Manning (2005) used dynamic programming over a phrase structure tree to prevent overlaps between arguments, and Punyakanok, Roth, and Yih (2008) used constraints in an ILP to respect this requirement. Inspired by the latter, we require that each input sentence position of x be covered by at most one argument of t. We define: G(i) = {s | s ∈ S, s covers position i in x} (13) We can define our overlap constraints in terms of G as follows, for every sentence position i: ∀i ∈ {1, . . . , |x|}, (cid:2) (cid:2) r∈R f s∈G(i) zr,s ≤ 1 (14) This gives us O(|x|) constraints. It is worth noting that this constraint aims to achieve the same effect as beam search, as described in Section 6.3, which tries to avoid argument overlap greedily. Pairwise “Exclusions.” For many target classes, there are pairs of roles forbidden to appear together in the analysis of a single target token. Consider the following two sentences: (1) A blackberry resembles a loganberry . Entity 1 (2) Most berries Entities Entity 2 resemble each other. Consider the uninflected target resemble in both sentences, evoking the same meaning. In Example (1), two roles—which we call Entity 1 and Entity 2—describe two entities that are similar to each other. In the second sentence, a phrase fulfills a third role, called Entities, that collectively denotes some objects that are similar. It is clear that the roles Entity 1 and Entities cannot be overt for the same target at once, because the latter already captures the function of the former; a similar argument holds for the Entity 2 and Entities roles. We call this phenomenon the “excludes” relationship. Let us define a set of pairs from R f that have this relationship: Exclf = {(ri, rj) | ri and rj exclude each other} 40 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Das et al. Frame-Semantic Parsing Using the given set, we define the constraint: ∀(ri, rj) ∈ Exclf , zri,∅ + zrj,∅ ≥ 1 (15) If both roles are overt in a parse, this constraint will be violated, contravening the “excludes” relationship specified between the pair of roles. If neither or only one of the roles is overt, the constraint is satisfied. The total number of such constraints is |), which is the number of pairwise “excludes” relationships of a given frame. O(|Exclf Pairwise “Requirements.” The sentence in Example (1) illustrates another kind of con- straint. The target resemble cannot have only one of Entity 1 and Entity 2 as roles in text. For example, (3) * A blackberry resembles. Entity 1 Enforcing the overtness of two roles sharing this “requires” relationship is straight- forward. We define the following set for a frame f : Reqf = {(ri, rj) | ri and rj require each other} This leads to constraints of the form ∀(ri, rj) ∈ Reqf , zri,∅ − zrj,∅ = 0 (16) If one role is overt (or absent), the other must be as well. A related constraint has been used previously in the SRL literature, enforcing joint overtness relationships be- tween core arguments and referential arguments (Punyakanok, Roth, and Yih 2008, Section 3.4.1), which are formally similar to our example.42 7.1.2 Integer Linear Program and Relaxation. Plugging the constraints in Equations 12, 14, 15, and 16 into the last line of Equation (11), we have the argument identification problem expressed as an ILP, since the indicator variables z are binary. Here, apart from the ILP formulation, we will consider the following relaxation of Equation (11), which replaces the binary constraint z ∈ {0, 1}d by a unit interval constraint z ∈ [0, 1]d, yielding a linear program: maximize (cid:2) (cid:2) r∈R f s∈S c(r, s) × zr,s with respect to such that z ∈ [0, 1]d Az ≤ b. (17) 42 We noticed that, in the annotated data, in some cases, the “requires” constraint is violated by the FrameNet annotators. This happens mostly when one of the required roles is absent in the sentence containing the target, but is rather instantiated in an earlier sentence (Gerber and Chai 2010). We apply the hard constraint in Equation (16), though extending our algorithm to seek arguments outside the sentence is straightforward. For preliminary work extending SEMAFOR this way, see Chen et al. (2010). 41 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Computational Linguistics Volume 40, Number 1 There are several LP and ILP solvers available, and a great deal of effort has been spent by the optimization community to devise efficient generic solvers. An example is CPLEX, a state-of-the-art solver for mixed integer programming that we use as a baseline to solve the ILP in Equation (11) as well as its LP relaxation in Equation (17). Like many of the best implementations, CPLEX is proprietary. 7.1.3 Linguistic Constraints from FrameNet. Although enforcing the four different sets of constraints is intuitive from a general linguistic perspective, we ground their use in definitive linguistic information present in the FrameNet lexicon. From the annotated data in the FrameNet 1.5 release, we gathered that only 3.6% of the time is a role instantiated multiple times by different spans in a sentence. This justifies the uniqueness constraint enforced by Equation (12). Use of such a constraint is also consistent with prior work in frame-semantic parsing (Johansson and Nugues 2007). Similarly, we found that in the annotations, no arguments overlapped with each other for a given target. Hence, the overlap constraints in Equation (14) are also justified. Our third and fourth sets of constraints, presented in Equations (15) and (16), come from FrameNet, too. Examples (1) and (2) are instances where the target resemble evokes the SIMILARITY frame, which is defined in FrameNet as: Two or more distinct entities, which may be concrete or abstract objects or types, are characterized as being similar to each other. Depending on figure/ground relations, the entities may be expressed in two distinct frame elements and constituents, Entity 1 and Entity 2, or jointly as a single frame element and constituent, Entities. For this frame, the lexicon lists several roles other than the three we have already observed, such as Dimension (the dimension along which the entities are similar), Differ- entiating fact (a fact that reveals how the concerned entities are similar or different), and so forth. Along with the roles, FrameNet also declares the “excludes” and “requires” relationships noted in our discussion in Section 7.1.1. The case of the SIMILARITY frame is not unique; in Figure 1, the frame COLLABORATION, evoked by the target partners, also has two roles Partner 1 and Partner 2 that share the “requires” relationship. In fact, out of 877 frames in FrameNet 1.5, 204 frames have at least a pair of roles for which the “excludes” relationship holds, and 54 list at least a pair of roles that share the “requires” relationship. 7.1.4 Constraints as Factors in a Graphical Model. The LP in Equation (17) can be repre- sented as a maximum a posteriori inference problem in an undirected graphical model. In the factor graph, each component (zr,s) of the vector z corresponds to a binary variable, and each instantiation of a constraint in Equations (12), (14), (15), and (16) corresponds to a factor. Smith and Eisner (2008) and Martins et al. (2010) used such a representation to impose constraints in a dependency parsing problem; the latter discussed the equivalence of linear programs and factor graphs for representing dis- crete optimization problems. All of our constraints take standard factor forms we can describe using the terminology of Smith and Eisner and Martins et al. The uniqueness constraint in Equation (12) corresponds to an XOR factor, while the overlap constraint in Equation (14) corresponds to an ATMOSTONE factor. The constraints in Equation (15) enforcing the “excludes” relationship can be represented with an OR factor. Finally, each “requires” constraints in Equation (16) is equivalent to an XORWITHOUTPUT factor. 42 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Das et al. Frame-Semantic Parsing In the following section, we describe how we arrive at solutions for the LP in Equation (17) using dual decomposition, and how we adapt it to efficiently recover the exact solution of the ILP (Equation (11)), without the need of an off-the-shelf ILP solver. 7.2 “Augmented” Dual Decomposition Dual decomposition methods address complex optimization problems in the dual, by dividing them into simple worker problems (subproblems), which are repeatedly solved until a consensus is reached. The simplest technique relies on the subgradient algorithm (Komodakis, Paragios, and Tziritas 2007; Rush et al. 2010); as an alternative, Martins et al. (2011a, 2011b) proposed an augmented Lagrangian technique, which is more suitable when there are many small components —commonly the case in declarative constrained problems, like the one at hand. Here, we present a brief overview of the latter, which is called AD3. Let us start by establishing some notation. Let m ∈ {1, . . . , M} index a factor, and denote by i(m) the vector of indices of variables linked to that factor. (Recall that each factor represents the instantiation of a constraint.) We introduce a new set of variables, u ∈ Rd, called the “witness” vector. We split the vector z into M overlapping pieces , and add M constraints zm = ui(m) to impose that z1, . . . , zM, where each zm all the pieces must agree with the witness (and therefore with each other). Each of the M constraints described in Section 7.1 can be encoded with its own matrix Am and vector bm (which jointly define A and b in Equation (17)). For convenience, we denote by c ∈ Rd the score vector, whose components are c(r, s), for each r ∈ R f and s ∈ S (Equation (10)), and define the following scores for the mth subproblem: ∈ [0, 1] |i(m)| cm(r, s) = δ(r, s) −1c(r, s), ∀(r, s) ∈ i(m) where δ(r, s) is the number of constraints that involve role r and span s. Note that · zm. We can rewrite the LP in Equation (17) according to this definition, c · z = in the following equivalent form: M m=1 cm (cid:3) maximize M(cid:2) cm · zm m=1 ∈ [0, 1]i(m), with respect to u ∈ Rd, zm ∀m ≤ bm, Amzm ∀m zm = ui(m), such that ∀m (18) We introduce Lagrange multipliers λm for the equality constraints in the last line. The AD3 algorithm is depicted as Algorithm 2. Like dual decomposition approaches, it repeatedly performs a broadcast operation (the zm-updates, which can be done in parallel, one constraint per “worker”) and a gather operation (the u- and λ-updates). Each u-operation can be seen as an averaged voting which takes into consideration each worker’s results. Like in the subgradient method, the λ-updates can be regarded as price adjust- ments, which will affect the next round of zm-updates. The only difference with respect to the subgradient method (Rush et al. 2010) is that each subproblem involved in a zm-update also has a quadratic penalty that penalizes deviations from the previous 43 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 0 1 9 1 8 1 2 8 9 5 / c o l i _ a _ 0 0 1 6 3 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Computational Linguistics Volume 40, Number 1 Algorithm 2 AD3 for Argument Identification Require: role-span matching scores c := (cid:5)c(r, s)(cid:6) r,s, structural constraints (cid:5)Am, bm (cid:6)M m=1, penalty ρ > 0
1: initialize t ← 1
2: initialize u1 uniformly (es decir., tu(r, s) = 0.5, ∀r, s)
3: initialize each λ1
4: repeat
5:
6:

m = 0, ∀m ∈ {1, . . . , METRO}

for each m = 1, . . . , M do

make a zm-update by finding the best scoring analysis for the mth constraint,
with penalties for deviating from the consensus u:
− ρ
← argmax
2
≤bm
Amzt
metro

(cm + λt

metro) · zm

z(t+1)
metro

− ut

(cid:11)zm

(19)

i(metro)

(cid:11)2

end for

7:
8: make a u-update by updating the consensus solution, averaging z1, . . . , zm:

tu(t+1)(r, s) 1

δ(r, s)

9: make a λ-update:

(cid:2)

metro:(r,s)∈i(metro)

z(t+1)
metro

(r, s)

λ(t+1)
metro

← λt
metro

− ρ(z(t+1)
metro

− u(t+1)
i(metro) ),

∀m

t ← t + 1
10:
11: until convergence
Ensure: relaxed primal solution u

and dual solution λ∗
is integer, it will encode
an assignment of spans to roles. De lo contrario, it will provide an upper bound of the
true optimum.


. If u

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

average voting; it is this term that accelerates consensus and therefore convergence.
Martins et al. (2011b) also provide stopping criteria for the iterative updates using
primal and dual residuals that measure convergence; we refer the reader to that paper
for details.

A key attraction of this algorithm is that all the components of the declarative
specification remain intact in the procedural form. Each worker corresponds exactly
to one constraint in the ILP, which corresponds to one linguistic constraint. There is no
need to work out when, during the procedure, each constraint might have an effect, como
in beam search.

7.2.1 Solving the Subproblems. In a different application, Martins et al. (2011b, Sección 4)
showed how to solve each zm-subproblem associated with the XOR, XORWITHOUTPUT
and OR factors in runtime O(|i(metro)| registro |i(metro)|). The only subproblem that remains is that
of the ATMOSTONE factor; a solution with the same runtime is given in Appendix B.

7.2.2 Exact Decoding. It is worth recalling that AD3, like other dual decomposition
algoritmos, solves a relaxation of the actual problem. Although we have observed that
the relaxation is often tight (cf. Sección 7.3), this is not always the case. Específicamente, a
fractional solution may be obtained, which is not interpretable as an argument, y
therefore it is desirable to have a strategy to recover the exact solution. Two observations

44

Das et al.

Análisis semántico de marcos

are noteworthy. Primero, the optimal value of the relaxed problem (Ecuación (17)) proporciona
an upper bound to the original problem (Ecuación (11)). This is because Equation (11)
has the additional integer constraint on the variables. En particular, any feasible dual
point provides an upper bound to the original problem’s optimal value. Segundo, dur-
ing execution of the AD3 algorithm, we always keep track of a sequence of feasible
dual points. Por lo tanto, each iteration constructs tighter and tighter upper bounds.
With this machinery, we have all that is necessary for implementing a branch-and-
bound search that finds the exact solution of the ILP. The procedure works recursively
como sigue:

1. Initialize L = −∞ (our best value so far).

2. Run Algorithm 2. If the solution u


is integer, return u

and set L to the objec-
tive value. If along the execution we obtain an upper bound less than L, entonces
Algoritmo 2 can be safely stopped and return “infeasible”—this is the bound part.

De lo contrario (if u

is fractional) go to step 3.
3. Find the “most fractional” component of u


j ) and branch: constrain uj = 0
(call it u

0 or infeasibility; y
and go to step 2, eventually obtaining an integer solution u


∗ ∈ {tu

} eso
then constrain uj = 1 and do the same, obtaining u
0 , tu
1 . Return the u
1
yields the largest objective value.

Although this procedure may have worst-case exponential runtime, we found it empir-
ically to rapidly obtain the exact solution in all test cases.

7.3 Results with Collective Argument Identification

We present experiments only on argument identification in this section, as our goal is
to exhibit the importance of incorporating the various linguistic constraints during our
inference procedure. We present results on the full text annotations of FrameNet 1.5, y
do not experiment on the SemEval 2007 benchmark, as we have already established our
constraint-agnostic models as state-of-the-art. The model weights ψ used in the scoring
function c were learned as in Section 6.1 (es decir., by training a logistic regression model to
maximize conditional log-likelihood). The AD3 parameter ρ was initialized to 0.1, y
we followed Martins et al. (2011b) in dynamically adjusting it to keep a balance between
the primal and dual residuals.

We compare the following algorithms to demonstrate the efficacy of our collective

argument identification approach:43

1. Naive: This strategy selects the best span for each role r according to the score
function c(r, s), independently of all other roles—the decoding rule formalized in
Ecuación (7) de Sección 6.1. It ignores all constraints except “uniqueness.”

2. Beam: This strategy employs greedy beam search to eliminate overlaps between
predicted arguments, as described in Algorithm 1. Note that it does not try to
respect the “excludes” and “requires” constraints between pairs of roles. El
default size of the beam in Section 1 was a safe 10,000; this resulted in extremely
slow decoding times. For time comparison, we tried beam sizes of 100 y 2 (el
latter being the smallest size that achieves the same F1 score on the FrameNet 1.5
dev set).

43 The first two strategies correspond to rows 7 y 9, respectivamente, de mesa 8.

45

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Ligüística computacional

Volumen 40, Número 1

Mesa 9
Comparison of decoding strategies in Section 7.3 on the data set released with the FrameNet 1.5
Release, given gold frames. We evaluate in terms of precision, recordar, and F1 score on our test
set containing 4,458 objetivos. We also compute the number of constraint violations each model
makes: the three values are the numbers of overlapping arguments and violations of the
“requires” and “excludes” constraints of Section 7.1. Finalmente, decoding time (without feature
computation steps) on the whole test set is shown in the last column averaged over five runs.

ARGUMENT IDENTIFICATION
R

Método

PAG

F1

Violations

Time (s)

naive

82.00

76.36

79.08

441

beam = 2
beam = 100
beam = 10, 000

CPLEX, LP
CPLEX, exact

AD3, LP
AD3, exact

83.68
83.83
83.83

83.80
83.78

76.22
76.28
76.28

76.16
76.17

79.78
79.88
79.88

79.80
79.79

83.77
83.78

76.17
76.17

79.79
79.79

0
0
0

0
0

2
0

45

49
50
50

1
0

2
0

15

1.26 ± 0.01

0
1
1

0
0

0
0

2.74 ± 0.10
29.00 ± 0.25
440.67 ± 5.53

32.67 ± 1.29
43.12 ± 1.26

4.17 ± 0.01
4.78 ± 0.04

3. CPLEX, LP: This uses CPLEX to solve the relaxed LP in Equation (17). To han-
∗ =

dle fractional z, for each role r, we choose the best span s
argmaxs∈S

zr,s, breaking ties arbitrarily.

such that s

4. CPLEX, exact: This tackles the actual ILP (Ecuación (11)) with CPLEX.
5. AD3, LP: The relaxed problem is solved using AD3. We choose a span for each role

r

as in strategy 3.

6. AD3, exact: This couples AD3 with branch-and-bound search to get the exact

integer solution.

Mesa 9 shows performance of these decoding strategies on the test set. Nosotros informamos
precisión, recordar, and F1 scores. As with experiments in previous sections, we use the
evaluation script from SemEval 2007 shared task. Because these scores do not penalize
constraint violations, we also report the number of overlap, “excludes,” and “requires”
constraints that were violated in the test set. Finalmente, we tabulate each setting’s decoding
time in seconds on the whole test set averaged over five runs.44 The naive model
is very fast but suffers degradation in precision and violates one constraint roughly
per nine targets. The decoding strategy of Section 6.1 used a default beam size of
10,000, which is extremely slow; a faster version of beam size 100 results in the same
precision and recall values, but is 15 times faster on our test set. Beam size 2 resultados
in slightly worse precision and recall values, but is even faster. All of these, sin embargo,
result in many constraint violations. Strategies involving CPLEX and AD3 perform
similarly to each other and to beam search on precision and recall, but eliminate most
or all of the constraint violations. With respect to precision and recall, exact AD3 and
beam search with a width of 10,000 were found to be statistically indistinguishable
(p > 0.01). The decoding strategy with beam size 2 is 11–16 times faster than the

44 Experiments were conducted on a 64-bit machine with two 2.6-GHz dual-core CPUs (es decir., four processors

in all) and a total of 8 GB of RAM. The workers in AD3 were not parallelized, whereas CPLEX
automatically parallelized execution.

46

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Das et al.

Análisis semántico de marcos

.

(a) Gold annotation.

.

(b) Beam search output.

Cifra 6
An example from the test set where (a) exhibits the gold annotation for a target that evokes
the COLLABORATION frame, with the Partners role filled by the span international. (b) muestra
the prediction made by the beam search decoding scheme (beam = 10,000), where it marks
international with the Partner 1 role, violating the “requires” constraint; FrameNet notes that this
role should be present with the Partner 2 role. AD3 is conservative and predicts no role—it is
penalized by the evaluation script, but does not produce output that violates
linguistic constraints.

CPLEX strategies, but is only twice as fast as AD3, and results in significantly more
constraint violations. The exact algorithms are slower than the LP versions, but com-
pared with CPLEX, AD3 is significantly faster and has a narrower gap between its
exact and LP versions. We found that relaxation was tight 99.8% of the time on the test
examples.

The example in Figure 1 is taken from our test set, and shows an instance where two
roles, Partner 1 and Partner 2, share the “requires” relationship; for this example, the beam
search decoder misses the Partner 2 role, which is a violation, while our AD3 decoder
identifies both arguments correctly. Note that beam search makes plenty of linguistic
violations. We found that beam search, when violating many “requires” constraints,
often finds one role in the pair, which increases its recall. AD3 is sometimes more
conservative in such cases, predicting neither role. Cifra 6 shows such an example
where beam search finds one role (Partner 1) while AD3 is more conservative and predicts
no roles. Cifra 7 shows another example contrasting the output of beam search and
AD3 where the former predicts two roles sharing an “excludes” relationship; AD3 does
not violate this constraint and tries to predict a more consistent argument set. En general,
we found it interesting that imposing the constraints did not have much effect on
standard measures of accuracy.

Mesa 9 only shows results with gold frames. We ran the exact version of AD3 with
automatic frames as well. When the semi-supervised graph objective UJSF-(cid:2)1,2 se utiliza
for frame identification, the performance with AD3 is only a bit worse in comparison
with beam search (row 11 en mesa 8) when frame and argument identification are
evaluated together. We get a precision of 72.92, a recall of 65.22 and an F1 score of 68.86
(partial frame matching). De nuevo, all linguistic constraints are respected, unlike beam
buscar.

47

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Ligüística computacional

Volumen 40, Número 1

8. Conclusión

We have presented an approach to rich frame-semantic parsing, based on a combination
of knowledge from FrameNet, two probabilistic models trained on full text annota-
tions released along with the FrameNet lexicon, and expedient heuristics. The frame
identification model uses latent variables in order to generalize to predicates unseen
in either the FrameNet lexicon or training data, and our results show that, quite often,
this model chooses a frame closely related to the gold-standard annotation. Nosotros también
presented an extension of this model that uses graph-based semi-supervised learning
to better generalize to new predicates; this achieves significant improvements over the
fully supervised approach. Our argument identification model, trained using maximum
conditional log-likelihood, unifies the traditionally separate steps of detecting and

(a) Gold annotation.

(b) Beam search output.

(C) AD3 output.

Cifra 7
An example from the test set where (a) exhibits the gold annotation for a target that evokes
the DISCUSSION frame, with the Interlocutor 1 role filled by the span neighbors. (b) muestra
the prediction made by the beam search decoding scheme (beam = 10,000), where it marks
The next morning his households and neighbors with the Interlocutors role, which violates
the “excludes” constraint with respect to the Interlocutor 2 role. En (C), AD3 marks the wrong
span as the Interlocutor 1 role, but it does not violate the constraint. Both beam and
AD3 inference miss the Topic role.

48

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Das et al.

Análisis semántico de marcos

labeling arguments. Our system achieves improvements over the previous state of the
art on the SemEval 2007 benchmark data set at each stage of processing and collectively.
We also report stronger results on the more recent, larger FrameNet 1.5 release.

We applied the AD3 algorithm to collective prediction of a target’s arguments,
incorporating declarative linguistic knowledge as constraints. It outperforms the naive
local decoding scheme that is oblivious to the constraints. Además, it is significantly
faster than a decoder employing a state-of-the-art proprietary solver; it is only twice as
slow as beam search (our chosen decoding method for comparison with the state of
the art), which is inexact and does not respect all linguistic constraints. This method is
easily amenable to the inclusion of additional constraints.

From our results, we observed that in comparison to the SemEval 2007 datos
colocar, frame-semantic parsing performance significantly increases when we use the
FrameNet 1.5 release; this suggests that the increase in the number of full text anno-
tations and the size of the FrameNet lexicon is beneficial. We believe that with more
annotations in the future (decir, in the range of the number of PropBank annotations), nuestro
frame-semantic parser can reach even better accuracy, making it more useful for NLP
applications that require semantic analysis.

There are several open problems to be addressed. En primer lugar, we could further im-
prove the coverage of the frame-semantic parser by improving our semi-supervised
enfoque de aprendizaje; two possibilities are custom metric learning approaches (Dhillon,
Talukdar, and Crammer 2010) that suit the frame identification problem in graph-based
SSL, and sparse word representations (Turian, Ratinov, and Bengio 2010) as features
in frame identification. The argument identification model might also benefit from
semi-supervised learning. Further feature engineering and improved preprocessing,
including tokenization into lexical units, improved syntactic parsing, and the use of
external knowledge bases, is expected to improve the system’s accuracy. Finalmente, el
FrameNet lexicon does not contain exhaustive semantic knowledge. Automatic frame
and role induction is an exciting direction of future research that could further enhance
our methods of automatic frame-semantic parsing. The parser described in this article
is available for download at http://www.ark.cs.cmu.edu/SEMAFOR.

Apéndice

A. Target Identification Heuristics from J&N’07

We describe here the filtering rules that Johansson and Nugues (2007) used for identify-
ing frame evoking targets in their SemEval 2007 shared task paper. They built a filtering
component based on heuristics that removed words that appear in certain contexts, y
kept the remaining ones.45 These are:

(cid:2)
(cid:2)

(cid:2)
(cid:2)

have was retained only if had an object,

be was retained only if it was preceded by there,

will was removed in its modal sense,

of course and in particular were removed,

45 Although not explicitly mentioned in the paper, we believe that these rules were applied on a white list of

potential targets seen in FrameNet and the SemEval 2007 training data.

49

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Ligüística computacional

Volumen 40, Número 1

(cid:2)

(cid:2)
(cid:2)

(cid:2)
(cid:2)

(cid:2)

the prepositions above, against, en, abajo, beside, por, en, en, encima, and under
were removed unless their head was marked as locative,

after and before were removed unless their head was marked as temporal,

en, a, and through were removed unless their head was marked as
direction,

como, para, entonces, and with were always removed,

because the only sense of the word of was the frame PARTITIVE, fue
removed unless it was preceded by only, member, uno, mayoría, muchos, alguno, pocos,
part, majority, minority, proportion, half, tercero, quarter, todo, or none, or it was
followed by all, grupo, a ellos, or us,

all targets marked as support verbs for some other target were removed.

Note that J&N’07 used a syntactic parser that provided dependency labels correspond-
ing to locative, temporal, and directional arguments, which our syntactic parser of
choice (the MST parser) does not provide.

ATMOSTONE subproblems in AD3
ATMOSTONE
B. Solving ATMOSTONE

The ATMOSTONE subproblem can be transformed into that of projecting a point
(a1, . . . , ak) onto the set

(cid:4)

S

m =

∈ [0, 1]

|i(metro)| |

zm

(cid:3)|i(metro)|

j=1 zm,j

(cid:5)

≤ 1

This projection can be computed as follows:

(cid:5)
1. Clip each aj into the interval [0, 1] (es decir., set a
(cid:5)
(cid:5)
≤ 1, then return (a
1, . . . , a
k).

satisfies

(cid:5)
k
j=1 a
j

(cid:3)

j = min{máximo{aj, 0}, 1}). If the result

2. Otherwise project (a1, . . . , ak) onto the probability simplex:
(cid:5)

(cid:4)

zm

∈ [0, 1]

|i(metro)| |

(cid:3)|i(metro)|

j=1 zm,j = 1

This is precisely the XOR subproblem and can be solved in time O(|i(metro)|
registro |i(metro)|).

The proof of this procedure’s correctness follows from the proof in Appendix B of

Martins et al. (2011b).

Expresiones de gratitud
We thank Collin Baker, Katrin Erk, Ricardo
Johansson, and Nils Reiter for software, datos,
evaluation scripts, and methodological
details. We thank the reviewers of this and
the earlier papers, Alan Black, Ric Crabbe,
Michael Ellsworth, Rebecca Hwa, Dan Klein,
Russell Lee-Goldman, eslavo petrov, Dan Roth,
Josef Ruppenhofer, Amarnag Subramanya,
Partha Talukdar, and members of the ARK

group for helpful comments. This work was
supported by DARPA grant NBCH-1080004,
NSF grants IIS-0836431 and IIS-0915187,
Qatar National Research Foundation grant
NPRP 08-485-1-083, Google’s support of the
Worldly Knowledge Project at CMU,
computational resources provided by Yahoo,
and TeraGrid resources provided by the
Pittsburgh Supercomputing Center under
grant TG-DBS110003.

50

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Das et al.

Análisis semántico de marcos

Referencias
Auli, Michael and Adam Lopez. 2011.

A comparison of loopy belief propagation
and dual decomposition for integrated
CCG supertagging and parsing.
In Proceedings of the 49th Annual Meeting
of the Association for Computational
Lingüística: Tecnologías del lenguaje humano,
pages 470–480, Portland, O.

Panadero, Collin, Michael Ellsworth, y

Katrin Erk. 2007. SemEval-2007 task 19:
Frame semantic structure extraction.
In Proceedings of the Fourth International
Workshop on Semantic Evaluations,
pages 99–104, Prague.

Baluja, Shumeet, Rohan Seth, D. Sivakumar,
Yushi Jing, Jay Yagnik, Shankar Kumar,
Deepak Ravichandran, and Mohamed
Aly. 2008. Video suggestion and discovery
for YouTube: taking random walks
through the view graph. En procedimientos
of the 17th International Conference on
the World Wide Web, pages 895–904,
Beijing.

Bauer, Daniel and Owen Rambow. 2011.

Increasing coverage of syntactic
subcategorization patterns in FrameNet
using VerbNet. En Actas de la 2011
IEEE Fifth International Conference on
Semantic Computing, pages 181–184,
Washington, corriente continua.

Bejan, Cosmin A. 2009. Learning Event

Structures From Text. Doctor. tesis, El
University of Texas at Dallas.

bengio, Yoshua, Olivier Delalleau, y

Nicolas Le Roux. 2006. Label propagation
and quadratic criterion. In Olivier
Chapelle, Bernhard Sch ¨olkopf, y
Alexander Zien, editores, Semi-Supervised
Aprendiendo. CON prensa, Cambridge, MAMÁ,
pages 193–216.

Boas, Hans C. 2002. Bilingual FrameNet
dictionaries for machine translation.
In Proceedings of the Third International
Conference on Language Resources and
Evaluation, pages 1,364–1,371, Las Palmas.

Bottou, L´eon. 2004. Stochastic learning.
In Olivier Bousquet and Ulrike von
Luxburg, editores, Advanced Lectures on
Machine Learning, Lecture Notes in
Artificial Intelligence, LNAI 3176.
Springer Verlag, Berlina, pages 146–168.
Burbea, Jacob and Calyampudi R. Rao. 2006.

On the convexity of some divergence
measures based on entropy functions.
Transacciones IEEE sobre teoría de la información,
28(3):489–495.

Burchardt, Aljoscha, Katrin Erk, y

Anette Frank. 2005. A WordNet detour

to FrameNet. In Bernhard Fisseni,
Hans-Christian Schmitz, Bernhard
Schr ¨oder, and Petra Wagner, editores,
Sprachtechnologie, mobile Kommunikation
und linguistische Resourcen, volumen 8 de
Computer Studies in Language and Speech.
Peter Lang, Frankfurt am Main,
pages 408–421.

Burchardt, Aljoscha and Anette Frank. 2006.
Approaching textual entailment with LFG
and FrameNet frames. En Actas de la
Second PASCAL RTE Challenge Workshop,
pages 92–97, Venice.

Burchardt, Aljoscha, Marco Pennacchiotti,
Stefan Thater, and Manfred Pinkal. 2009.
Assessing the impact of frame semantics
on textual entailment. Natural Language
Ingeniería, 15(4):527–550.

Carreras, Xavier and Llu´ıs M`arquez. 2004.
Introduction to the CoNLL-2004 shared
tarea: Etiquetado de roles semánticos. En procedimientos
of the Eighth Conference on Computational
Natural Language Learning, pages 89–97,
Bostón, MAMÁ.

Carreras, Xavier and Llu´ıs M`arquez. 2005.
Introduction to the CoNLL-2005 shared
tarea: Etiquetado de roles semánticos. En procedimientos
of the Ninth Conference on Computational
Natural Language Learning, pages 152–164,
ann-arbor, MI.

Chang, Yin-Wen and Michael Collins.

2011. Exact decoding of phrase-based
translation models through Lagrangian
relaxation. En Actas de la 2011
Jornada sobre Métodos Empíricos en Natural
Procesamiento del lenguaje, pages 26–37,
Edimburgo.

Chapelle, Olivier, Bernhard Sch ¨olkopf,
and Alexander Zien, editores. 2006.
Semi-Supervised Learning. CON prensa,
Cambridge, MAMÁ.

Chen, Desai, Nathan Schneider, Dipanjan

El, y Noé A.. Herrero. 2010. SEMAFOR:
Frame argument resolution with
log-linear models. En Actas de la
5th International Workshop on Semantic
Evaluation, pages 264–267, Upssala.

Corduneanu, Adrian and Tommi Jaakkola.
2003. On information regularization.
In Proceedings of the Nineteenth Conference
on Uncertainty in Artificial Intelligence,
pages 151–158, Acapulco.

El, Dipanjan, andref. t. Martins, y
Noah A. Herrero. 2012. An exact dual
decomposition algorithm for shallow
semantic parsing with constraints.
In Proceedings of the First Joint Conference
on Lexical and Computational Semantics,
pages 209–217, Montr´eal.

51

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Ligüística computacional

Volumen 40, Número 1

El, Dipanjan and Slav Petrov. 2011.

Unsupervised part-of-speech tagging
with bilingual graph-based projections.
In Proceedings of the 49th Annual Meeting
of the Association for Computational
Lingüística: Tecnologías del lenguaje humano,
pages 600–609, Portland, O.

Fellbaum, Christiane, editor. 1998. WordNet:
an electronic lexical database. CON prensa,
Cambridge, MAMÁ.

Fillmore, Charles J. 1982. Frame semantics.

In Linguistics in the Morning Calm.
Hanshin Publishing Co., Seoul,
pages 111–137.

El, Dipanjan, Nathan Schneider, Desai

Fillmore, Charles J., Christopher R. Johnson,

Chen, y Noé A.. Herrero. 2010.
Probabilistic frame-semantic parsing.
In Proceedings of the Human Language
Technologies Conference of the North
American Chapter of the Association for
Ligüística computacional, pages 948–956,
Los Angeles, California.

El, Dipanjan and Noah A. Herrero. 2011.

Semi-supervised frame-semantic parsing
for unknown predicates. En procedimientos de
the 49th Annual Meeting of the Association
para Lingüística Computacional: Humano
Language Technologies, pages 1,435–1,444,
Portland, O.

El, Dipanjan and Noah A. Herrero. 2012.
Graph-based lexicon expansion with
sparsity-inducing penalties. En procedimientos
of the Human Language Technologies
Conferencia del Capítulo Norteamericano
of the Association for Computational
Lingüística, pages 677–687, Montr´eal.
Dean, Jeffrey and Sanjay Ghemawat. 2008.
MapReduce: Simplified data processing
on large clusters. Communications of the
ACM, 51(1):107–113.

DeNero, John and Klaus Macherey. 2011.

Model-based aligner combination using
dual decomposition. En procedimientos de
the 49th Annual Meeting of the Association
para Lingüística Computacional: Humano
Language Technologies, pages 420–429,
Portland, O.

Deschacht, Koen and Marie-Francine Moens.

2009. Semi-supervised semantic role
labeling using the Latent Words Language
Modelo. En Actas de la 2009 Conferencia
sobre métodos empíricos en lenguaje natural
Procesando, pages 21–29, Singapur.
Dhillon, Paramveer S., Partha Pratim

Talukdar, and Koby Crammer. 2010.
Learning better data representation
using inference-driven metric
aprendiendo. In Proceedings of the ACL
2010 Conference Short Papers,
pages 377–381, Uppsala.

Erk, Katrin and Sebastian Pad ´o. 2006.

Shalmaneser—a toolchain for shallow
semantic parsing. En Actas de la
Fifth International Conference on Language
Resources and Evaluation, pages 527–532,
Genoa.

52

and Miriam R. l. Petruck. 2003.
Background to FrameNet. Internacional
Journal of Lexicography, 16.3:235–250.
Fleischman, Miguel, Namhee Kwon, y
Eduard Hovy. 2003. Maximum entropy
models for FrameNet classification.
En Actas de la 2003 Conferencia sobre
Empirical Methods in Natural Language
Procesando, pages 49–56, Sapporo.
Fung, Pascale and Benfeng Chen. 2004.

BiFrameNet: Bilingual frame semantics
resource construction by cross-lingual
induction. In Proceedings of the 20th
International Conference on Computational
Lingüística, pages 931–937, Geneva.

F ¨urstenau, Hagen and Mirella Lapata. 2009a.

Graph alignment for semi-supervised
etiquetado de roles semánticos. En Actas de la
2009 Conference on Empirical Methods in
Natural Language Processing, pages 11–20,
Singapur.

F ¨urstenau, Hagen and Mirella Lapata. 2009b.
Semi-supervised semantic role labeling.
In Proceedings of the 12th Conference of the
European Chapter of the ACL, pages 220–228,
Atenas.

F ¨urstenau, Hagen and Mirella Lapata. 2012.
Semi-supervised semantic role labeling
via structural alignment. computacional
Lingüística, 38(1):135–171.

Gerber, Matthew and Joyce Chai. 2010.

Beyond NomBank: A study of implicit
arguments for nominal predicates. En
Proceedings of ACL, pages 1,583–1,592,
Uppsala.

Gildea, Daniel and Daniel Jurafsky. 2002.
Automatic labeling of semantic roles.
Ligüística computacional, 28(3):245–288.
Girju, Roxana, Preslav Nakov, Vivi Nastase,
Stan Szpakowicz, Peter Turney, and Deniz
Yuret. 2007. SemEval-2007 task 04:
Classification of semantic relations
between nominals. En Actas de la
Fourth International Workshop on Semantic
Evaluations, pages 13–18, Prague.
Giuglea, Ana-Maria and Alessandro
Moschitti. 2006. Shallow semantic
parsing based on FrameNet, VerbNet
and PropBank. En Actas de la
17th European Conference on Artificial
Inteligencia, pages 563–567, Ámsterdam.

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Das et al.

Análisis semántico de marcos

Gropp, w., mi. Lusk, y un. Skjellum. 1994.
Using MPI: Portable Parallel Programming
with the Message-Passing Interface.
CON prensa, Cambridge, MAMÁ.

Hajiˇc, Ene, Massimiliano Ciaramita,

Richard Johansson, Daisuke Kawahara,
Maria Ant `onia Mart´ı, Llu´ıs M`arquez,
Adam Meyers, Joakim Nivré, Sebastian
Pad ´o, Jan ˇStˇep´anek, Pavel Stra ˇn´ak, Mihai
Surdeanu, Nianwen Xue, and Yi Zhang.
2009. The CoNLL-2009 shared task:
Syntactic and semantic dependencies in
multiple languages. En Actas de la
Thirteenth Conference on Computational
Natural Language Learning, pages 1–18,
Roca, CO.

Ide, Nancy and Jean V´eronis. 1998.

Introduction to the special issue on word
sense disambiguation: The state of the art.
Ligüística computacional, 24(1):2–40.
Johansson, Richard and Pierre Nugues.

2007. LTH: Semantic structure extraction
using nonprojective dependency trees.
In Proceedings of the 4th International
Workshop on Semantic Evaluations,
pages 227–230, Prague.

Johansson, Richard and Pierre Nugues. 2008.
Dependency-based semantic role labeling
of PropBank. En Actas de la 2008
Jornada sobre Métodos Empíricos en Natural
Procesamiento del lenguaje, pages 69–78,
Honolulu, HI.

Kingsbury, Paul and Martha Palmer. 2002.

From TreeBank to PropBank. En procedimientos
of the 3rd International Conference on
Language Resources and Evaluation,
pages 1,989–1,993, Las Palmas.

Komodakis, Nikos, Nikos Paragios, y

Georgios Tziritas. 2007. MRF optimization
via dual decomposition: Message-passing
revisited. In Eleventh International
Conference on Computer Vision, pages 1–8,
Río de Janeiro.

Koo, Terry, Alejandro M.. Rush, Miguel
collins, Tommi Jaakkola, and David
Sontag. 2010. Dual decomposition for
parsing with non-projective head
automata. En Actas de la 2010
Jornada sobre Métodos Empíricos en Natural
Procesamiento del lenguaje, pages 1,288–1,298,
Cambridge, MAMÁ.

Kowalski, Matthieu and Bruno Torr´esani.
2009. Sparsity and persistence: Mixed
norms provide simple signal models with
dependent coefficients. Signal, Image and
Video Processing, 3:251–264.

Lang, Joel and Mirella Lapata. 2010.

Unsupervised induction of semantic roles.
In Proceedings of the Human Language

Technologies Conference of the North
American Chapter of the Association for
Ligüística computacional, pages 939–947,
Los Angeles, California.

Lang, Joel and Mirella Lapata. 2011.

Unsupervised semantic role induction
with graph partitioning. En procedimientos
del 2011 Conferencia sobre Empirismo
Métodos en el procesamiento del lenguaje natural,
pages 1320–1331, Edimburgo.

lin, Dekang. 1993. Principle-based parsing
without overgeneration. En procedimientos de
the 31st Annual Meeting of the Association for
Ligüística computacional, pages 112–120,
Columbus, OH.

lin, Dekang. 1994. Principar–an efficient,
broad-coverage, principle-based parser.
In Proceedings of the 15th Conference on
Ligüística computacional, pages 482–488,
Kioto.

lin, Dekang. 1998. Automatic retrieval and
clustering of similar words. En procedimientos
of the 36th Annual Meeting of the Association
for Computational Linguistics and 17th
International Conference on Computational
Lingüística, pages 768–774, Montréal.
lin, Jianhua. 1991. Divergence measures
based on the Shannon entropy. IEEE
Transactions on Information Theory,
37(1):145–151.

Litkowski, Kenneth C. and Orin Hargraves.
2007. SemEval-2007 task 06: Word-sense
disambiguation of prepositions. En
Proceedings of the Fourth International
Workshop on Semantic Evaluations
(SemEval-2007), pages 24–29, Prague.
Liu, Dong C. and Jorge Nocedal. 1989. On
the limited memory BFGS method for
large scale optimization. Matemático
Programming, 45(3):503–528.
marco, Mitchell P., Mary Ann

Marcinkiewicz, and Beatrice Santorini.
1993. Building a large annotated corpus of
Inglés: the Penn treebank. computacional
Lingüística, 19(2):313–330, Junio.

M`arquez, Llu´ıs, Xavier Carreras, Kenneth C.
Litkowski, and Suzanne Stevenson. 2008.
Etiquetado de roles semánticos: an introduction to
the special issue. Ligüística computacional,
34(2):145–159, Junio.

Martins, andref. T., Mario A. t. Figueiredo,
Pedro M. q. Aguiar, Noah A. Herrero, y
Eric P. Xing. 2011a. An augmented
Lagrangian approach to constrained MAP
inferencia. In Proceedings of the 28th
International Conference on Machine
Aprendiendo, pages 169–176, Bellevue, Washington.
Martins, andref. T., Noah A. Herrero, Pedro
METRO. q. Aguiar, and Mario A. t. Figueiredo.

53

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Ligüística computacional

Volumen 40, Número 1

2011b. Dual decomposition with many
overlapping components. En procedimientos
del 2011 Conferencia sobre Empirismo
Métodos en el procesamiento del lenguaje natural,
pages 238–249, Edimburgo.

Martins, andref. T., Noah A. Herrero, y

Eric P. Xing. 2009. Concise integer
linear programming formulations for
dependency parsing. En procedimientos de
the Joint Conference of the 47th Annual
Meeting of the Association for Computational
Linguistics and the 4th International
Joint Conference on Natural Language
Processing of the AFNLP, pages 342–350,
Suntec.

Martins, andref. T., Noah A. Herrero, Eric P.
Xing, Mario A. t. Figueiredo, and Pedro
METRO. q. Aguiar. 2010. Turbo parsers:
Dependency parsing by approximate
variational inference. En Actas de la
2010 Conference on Empirical Methods in
Natural Language Processing, pages 34–44,
Cambridge, MAMÁ.

Matsubayashi, Yuichiroh, Naoaki Okazaki,
and Jun’ichi Tsujii. 2009. A comparative
study on generalization of semantic roles
in FrameNet. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the
Association for Computational Linguistics and
the 4th International Joint Conference on
Natural Language Processing of the AFNLP,
pages 19–27, Suntec.

McDonald, ryan, Koby Crammer, y

Fernando Pereira. 2005. En línea
large-margin training of dependency
analizadores. In Proceedings of the 43rd Annual
Meeting of the Association for Computational
Lingüística, pages 91–98, ann-arbor, MI.

Meyers, Adán, Ruth Reeves, Catherine
Macleod, Rachel Szekely, Veronika
Zielinska, Brian Young, and Ralph
Grishman. 2004. The NomBank project:
An interim report. En Actas de la
NAACL-HLT Workshop on Frontiers
in Corpus Annotation, pages 24–31,
Bostón, MAMÁ.

Moschitti, Alessandro, Paul Morarescu, y
Sanda M. Harabagiu. 2003. Open-domain
information extraction via automatic
semantic labeling. In Ingrid Russell and
Susan M. Haller, editores, Actas de la
Sixteenth International Florida Artificial
Intelligence Research Society Conference,
pages 397–401, Calle. Augustine, Florida.
Narayanan, Srini and Sanda Harabagiu.
2004. Question answering based on
semantic structures. En procedimientos de
the 20th International Conference on
Ligüística computacional, Geneva.

54

Pad ´o, Sebastian and Katrin Erk. 2005.

To cause or not to cause: cross-lingual
semantic matching for paraphrase
modelling. En Actas de la
Cross-Language Knowledge Induction
Taller, Cluj-Napoca.

Pado, Sebastian and Mirella Lapata. 2005.

Cross-linguistic projection of role-semantic
información. In Proceedings of Human
Language Technology Conference and
Jornada sobre Métodos Empíricos en Natural
Procesamiento del lenguaje, pages 859–866,
vancouver.

Pennacchiotti, Marco, Diego De Cao, Roberto
Basili, Danilo Croce, and Michael Roth.
2008. Automatic induction of FrameNet
lexical units. En Actas de la 2008
Jornada sobre Métodos Empíricos en Natural
Procesamiento del lenguaje, pages 457–465,
Honolulu, HI.

Pradhan, Sameer S., Wayne H. Ward,

Kadri Hacioglu, James H. Martín, y
Dan Jurafsky. 2004. Shallow semantic
parsing using support vector machines.
In Proceedings of the Human Language
Technologies Conference of the North
American Chapter of the Association for
Ligüística computacional, pages 233–240,
Bostón, MAMÁ.

Punyakanok, Vasin, Dan Roth, and Wen-tau
Yih. 2008. The importance of syntactic
parsing and inference in semantic role
labeling. Ligüística computacional,
34(2):257–287.

Punyakanok, Vasin, Dan Roth, Wen-tau Yih,

and Dav Zimak. 2004. Semantic role
labeling via integer linear programming
inferencia. In Proceedings of the 20th
International Conference on Computational
Lingüística, pages 1,346–1,352, Geneva.
Ratnaparkhi, Adwait. 1996. A maximum

entropy model for part-of-speech tagging.
En Actas de la 1996 Empirical
Métodos en el procesamiento del lenguaje natural,
pages 133–142, Copenhague.

Riedel, Sebastian and James Clarke. 2006.

Incremental integer linear programming
for non-projective dependency parsing.
En Actas de la 2006 Conferencia sobre
Empirical Methods in Natural Language
Procesando, pages 129–137, Sídney.

Roth, Dan and Wen-tau Yih. 2004. A linear
programming formulation for global
inference in natural language tasks.
In Proceedings of the Eighth Conference on
Computational Natural Language Learning,
pages 1–8, Bostón, MAMÁ.

Ruppenhofer, Josef, Michael Ellsworth,
Miriam R. l. Petruck, Christopher R.

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Das et al.

Análisis semántico de marcos

Johnson, and Jan Scheffczyk. 2006.
FrameNet II: extended theory and
práctica. International Computer Science
Instituto, berkeley, California.

Rush, Alejandro M.. and Michael Collins.

2011. Exact decoding of syntactic
translation models through Lagrangian
relaxation. In Proceedings of the 49th Annual
Meeting of the Association for Computational
Lingüística: Tecnologías del lenguaje humano,
pages 72–82, Portland, O.

Rush, Alejandro M., David Sontag, Miguel

collins, and Tommi Jaakkola. 2010.
On dual decomposition and linear
programming relaxations for natural
language processing. En Actas de la
2010 Conference on Empirical Methods in
Natural Language Processing, pages 1–11,
Cambridge, MAMÁ.

Schuler, Karin K. 2005. VerbNet: a

broad-coverage, comprehensive verb lexicon.
Doctor. tesis, Universidad de Pennsylvania.
Sha, Fei and Fernando Pereira. 2003. Shallow
parsing with conditional random fields.
In Proceedings of the Human Language
Technology Conference of the North American
Chapter of the Association for Computational
Lingüística, pages 134–141, Edmonton.
shen, Dan and Mirella Lapata. 2007. Usando

semantic roles to improve question
answering. En Actas de la 2007 Joint
Jornada sobre Métodos Empíricos en Natural
Language Processing and Computational
Natural Language Learning, pages 12–21,
Prague.

Shi, Lei and Rada Mihalcea. 2004. Un

algorithm for open text semantic parsing.
In Proceedings of Workshop on Robust
Methods in Analysis of Natural Language
Datos, pages 59–67, Geneva.

Shi, Lei and Rada Mihalcea. 2005. Putting
pieces together: Combining FrameNet,
VerbNet and WordNet for robust
semantic parsing. In Proceedings of the 6th
International Conference on Computational
Linguistics and Intelligent Text Processing,
pages 100–111, Ciudad de México.

Herrero, David A. and Jason Eisner. 2008.

Dependency parsing by belief
propagation. En Actas de la 2008
Jornada sobre Métodos Empíricos en Natural
Procesamiento del lenguaje, pages 145–156,
Honolulu, HI.

Subramanya, Amarnag and Jeff Bilmes.
2008. Soft-supervised learning for text
classification. En Actas de la 2008
Jornada sobre Métodos Empíricos en Natural
Procesamiento del lenguaje, pages 1,090–1,099,
Honolulu, HI.

Subramanya, Amarnag, eslavo petrov, y

Fernando Pereira. 2010. Efficient
graph-based semi-supervised learning of
structured tagging models. En procedimientos
del 2010 Conferencia sobre métodos empíricos
en procesamiento del lenguaje natural,
pages 167–176, Cambridge, MAMÁ.
Surdeanu, Mihai, Sanda Harabagiu,

John Williams, and Paul Aarseth. 2003.
Using predicate-argument structures for
information extraction. En Actas de la
41st Annual Meeting on Association for
Ligüística computacional, pages 8–15,
Sapporo.

Surdeanu, Mihai, Richard Johansson,

Adam Meyers, Llu´ıs M`arquez, and Joakim
Nivre. 2008. The CoNLL 2008 shared task
on joint parsing of syntactic and semantic
dependencies. In Proceedings of the Twelfth
Conference on Computational Natural
Aprendizaje de idiomas, pages 159–177,
Manchester.

Szummer, Martin and Tommi Jaakkola.

2001. Partially labeled classification with
Markov random walks. In Advances in
Neural Information Processing Systems 14,
pages 945–952, vancouver.

Talukdar, Partha Pratim and Koby Crammer.

2009. New regularized algorithms for
transductive learning. En Actas de la
European Conference on Machine Learning
and Knowledge Discovery in Databases,
pages 442–457, Bled.

Thompson, Cynthia A., Roger Levy,

and Christopher D. Manning. 2003.
A generative model for semantic role
labeling. In Proceedings of the European
Conference on Machine Learning,
pages 397–408, Cavtat-Dubrovnik.

Titov, Ivan and Alexandre Klementiev. 2012.
A Bayesian approach to unsupervised
semantic role induction. En procedimientos de
the 13th Conference of the European Chapter of
la Asociación de Lingüística Computacional,
pages 12–22, Avignon.

Toutanova, Kristina, Aria Haghighi,
and Christopher Manning. 2005.
Joint learning improves semantic
role labeling. En Actas de la
43rd Annual Meeting of the Association
para Lingüística Computacional,
pages 589–596, ann-arbor, MI.
Turian, Joseph, Lev-Arie Ratinov,
and Yoshua Bengio. 2010. Word
representaciones: A simple and general
method for semi-supervised learning.
In Proceedings of the 48th Annual Meeting
of the Association for Computational
Lingüística, pages 384–394, Uppsala.

55

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

Ligüística computacional

Volumen 40, Número 1

Weston, Jason, Fr´ed´eric Ratle, y

Ronan Collobert. 2008. Deep learning
via semi-supervised embedding.
In Proceedings of the 25th International
Conference on Machine Learning,
pages 1,168–1,175, Helsinki.

Xue, Nianwen and Martha Palmer. 2004.
Calibrating features for semantic role
labeling. En Actas de la 2004
Jornada sobre Métodos Empíricos en Natural
Procesamiento del lenguaje, pages 88–94,
Barcelona.

Hacer, Szu-ting, Edward Loper, and Martha

Palmer. 2007. Can semantic roles
generalize across genres? En procedimientos de

the Human Language Technologies Conference
of the North American Chapter of the
Asociación de Lingüística Computacional,
pages 548–555, Rochester, Nueva York.
Zhu, Xiaojin. 2008. Semi-supervised

learning literature survey. Disponible en
http://pages.cs.wisc.edu/∼jerryzhu/
pub/ssl survey.pdf. Last Accessed
Julio 2013.

Zhu, Xiaojin, Zoubin Ghahramani, y
John Lafferty. 2003. Semi-supervised
learning using Gaussian fields and
harmonic functions. En Actas de la
20th International Conference on Machine
Aprendiendo, pages 912–919, Washington, corriente continua.

yo

D
oh
w
norte
oh
a
d
mi
d

F
r
oh
metro
h

t
t

pag

:
/
/

d
i
r
mi
C
t
.

metro

i
t
.

mi
d
tu
/
C
oh

yo
i
/

yo

a
r
t
i
C
mi

pag
d

F
/

/

/

/

4
0
1
9
1
8
1
2
8
9
5
/
C
oh

yo
i

_
a
_
0
0
1
6
3
pag
d

.

F

b
y
gramo
tu
mi
s
t

t

oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3

56Frame-Semantic Parsing image
Frame-Semantic Parsing image
Frame-Semantic Parsing image
Frame-Semantic Parsing image
Frame-Semantic Parsing image
Frame-Semantic Parsing image
Frame-Semantic Parsing image
Frame-Semantic Parsing image
Frame-Semantic Parsing image
Frame-Semantic Parsing image
Frame-Semantic Parsing image
Frame-Semantic Parsing image

Descargar PDF